Journals →  Tsvetnye Metally →  2020 →  #11 →  Back

ArticleName Multicriteria optimization of the production of hot-compacted Pb – C composite materials based on chips of recycled battery electrodes
DOI 10.17580/tsm.2020.11.09
ArticleAuthor Sergeenko S. N., Vasiliev A. N., Yatsenko A. N., Marakhovsky M. A.

Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia:

S. N. Sergeenko, Associate Professor, Senior Researcher, Candidate of Technical Sciences, e-mail:
A. N. Vasiliev, Postgraduate Student, e-mail:
A. N. Yatsenko, Associate Professor, Candidate of Technical Sciences


Southern Federal University, Rostov-on-Don, Russia:
M. A. Marakhovsky, Head of the Sector, Candidate of Technical Sciences


The technology of obtaining hot-compacted Pb – C composite materials (CM) based on chip waste of recycled storage battery electrodes is considered. On the basis of a two-factor experiment, the effect of the graphite content CГК and mechanical activation (τМА) time МА on the relative density of moldings, hardness (HRR), and shear strength (τВ) of the hot-compacted Pb – C composite material was studied. The agglomeration of small and large particles was revealed when obtaining a charge in the mixing mode. An increase in the MA duration to extreme values (τМА = 1.8 ks) leads to the destruction of agglomerates. It is shown that the minimum values of the relative molding density depend on the content of the fraction with sizes of 35–63 μm in the charge and are observed with the introduction of 0.5% (wt.) graphite and the MA duration of 1.8 ks. On the basis of multicriteria optimization, the optimal values of technological factors (τМА = 3.0 ks; CG = 0.15% (wt.)) for preparing the charge obtained in the MA mode were determined, providing increased values of strength and hardness (HRR = 85, τВ = 15.6 MPa) of the hot-compacted Pb – C composite material.

keywords Multicriteria optimization, Pb – C composite material, mechanical activation, hardness, strength, hot stamping with extrusion, lead chips

1. Plekhanov K. A., Makhmudov A. Kh., Bondarenko O. Yu. Leaden alloy for lattice frames of storage batteries and a method of alloy production. Patent RF, No. 2224040. Applied: 28.01.2002. Published: 20.02.2004.
2. Dzenzerskiy D. V., Skosar Yu. I., Burylov S. V., Method for continuous production of lead-acid batteries leads. Patent RF, No. 2299499. Applied: 09.08.2005. Published: 20.05.2007. Bulletin No.14.
3. Rada S., Cuibus D., Vermesan H. et al. Structural and electrochemical properties of recycled active electrodes from spent lead acid battery and modified with different manganese dioxide contents. Electrochimica Acta. 2018. Vol. 268. pp. 332–339.
4. Peixoto L. C., Osorio W. R., Garcia A. Microstructure and electrochemical corrosion behavior of a Pb–1 wt% Sn alloy for lead-acid battery components. Journal of Power Sources. 2009. Vol. 192, No. 2. pp. 724–729.
5. Osorio W. R., Rosa D. M., Garcia A. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb–Sb alloys for lead acid battery grids. Journal of Power Sources. 2008. Vol. 175, No. 1. pp. 595–603.
6. Osorio W. R., Peixoto L. C., Garcia A. Electrochemical corrosion of Pb – 1 wt% Sn and Pb – 2.5 wt% Sn alloys for lead-acid battery applications. Journal of Power Sources. 2009. Vol. 194, No. 2. pp. 1120–1127.
7. Karami H., Kamari M. A., Haghdar S., Sadeghi A. et al. Synthesis of lead oxide nanoparticles by Sonochemical method and its application as cathode and anode of lead-acid batteries. Materials Chemistry and Physics. 2008. Vol. 108, No. 2-3. pp. 337–344.
8. Zhao Junnuo. Lead-acid cell plate and its manufacturing process. Patent RF, No. 2152111. Baoton Science and Tehnology Service Corporation. Applied: 13.08.1996. Published: 27.06.2000. Bulletin No. 18.
9. Leader-Lab Ltd. Lead-acid storage battery plate. Patent RF, No. 2250537. Applied: 11.03.03. Published: 10.10.04. Bulletin No. 28.
10. Kazarjan S. A., Kharisov G. G., Kazarov V. A. Hybrid device for electric energy accumulation with electrochemical supercapacitor of lead-acid battery. Patent RF, No. 2484565. Applied: 15.02.2008. Published: 23.03.2011. Bulletin No. 16.
11. Emeljanov S. G., Konovalov M. B., Kripachev A. V. Method of producing electrode of lead-acid battery. Patent RF, No. 2583447. Applied: 25.11.2014. Published: 10.05.2016. Bulletin No. 13.
12. Hao H., Chen K., Liu H. et al. A Review of the Positive Electrode Additives in Lead-Acid Batteries. International Journal of Electrochemical Science. 2018. Vol. 13, No. 3. pp. 2329–2340.
13. Yang H., Qi K., Gong L. et al. Lead Oxide Enveloped in N-Doped Graphene Oxide Composites for Enhanced High-Rate Partial-State-of-Charge Performance of Lead-Acid Battery. ACS Sustainable Chemistry & Engineering. 2018. No. 6. pp. 11408–11413.
14. Suwarno W., Sholihah N. K., Shahab A. Influences of carbon additives in the positive active material of lead-acid batteries to improve capacity and life cycles. AIP Conference Proceedings. 2018.

15. Settelein J., Lorrmann H., Sextl G. Evaluating the lead affinity of graphite additives in lead-acid batteries by electrochemical deposition. Electrochimica Acta. 2017. Vol. 233. pp. 173–180.
16. Baca P., Micka K., Krivik P. et al. Study of the influence of carbon on the negative lead-acid battery electrodes. Journal of Power Sources. 2011. Vol. 196, No. 8. pp. 3988–3992.
17. Beljakov A. I., Alekhin V. G., Zvjagintsev M. S. Negative electrode for lead-acid battery and manufacturing method thereof. Patent RF, No. 2377705. Applied: 12.12.2008. Published: 27.12.2009.
18. Killi K. S., Tehjlor S. S. Storage battery carbon-coated plates. Patent RF, No. 2314599. Applied: 15.05.2003. Published: 27.06.2005. Bulletin No. 18.
19. Yin J., Lin N., Zheqi W. et al. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface. Journal of Energy Chemistry. 2018. Vol. 27, No. 6. pp. 1674–1683.
20. Saravanan M., Ganesan M., Ambalavanan S. Enhanced electrochemical performance of a lead–acid battery by a surface modified negative grid with multiwall carbon nanotubecoating. RSC Advances. 2015. No. 33.
21. Czerwiski A., Wróbel J., Lach J. et al. Positive plate for carbon lea dacid battery. International Journal of Electrochemical Science. 2014. Vol. 9. pp. 4826–4839.
22. Elshin A. N., Elshina L. A., Elshina V. A. Lead-carbon metal composite material for electrodes of lead-acid batteries and method of synthesizing same. Patent WO No. 2017/043992 A1. Applied: 07.09.2015. Published: 16.03.2017.
23. White E. R., Lodico J. J., Regan B. C. Intercalation events visualized in single microcrystals of graphite. Nature Communications. 2017. No. 8.
24. Valenciano J., Sánchez A., Trinidad F., Hollenkamp A. F. Graphite and fiberglass additives for improving high-rate partial-state-of-charge cycle life of valve-regulated lead-acid batteries. Journal of Power Sources. 2006. Vol. 158, No. 2. pp. 851–863.
25. Rada S., Unguresan M. L., Bolundut L. et al. Structural and electrochemical investigations of the electrodes obtained by recycling of lead acid batteries. Journal of Electroanalytical Chemistry. 2016. Vol. 780. pp. 187–196.
26. Slabkii D. V., Sergeenko S. N. Hot-deformed Al – Ni powder materials based on alloy D-16 mechanically-activated turnings. Metallurgist. 2016. Vol. 59, No. 11. pp. 1228–1233.
27. Fedoseeva M. A., Sergeenko S. N. Structure and properties of Al – FeTi powder material based on mechanochemically activated alloy D-16 turnings. Metallurgist. 2015. Vol. 59, No. 5-6. pp. 535–539.
28. Dorofeev Yu. G., Bezborodov E. N., Sergeenko S. N. Special features of formation of compacted material from mechanochemically activated fining of aluminum alloy D16. Metal Science and Heat Treatment. 2003. Vol. 45, No. 1-2. pp. 73–75.
29. Kalenko О. G., Gurin I. V., Yakovitskaya Т. S. Purity of graphite and carbon composites. Voprosy atomnoy nauki i tekhniki. 2011. No. 2. pp. 132–136.
30. Powder metallurgy. Sintered and composite materials. Edited by V. Shatt. Moscow: Metallurgiya, 1983. pp. 49, 478.
31. Kostikov V. I., Dorofeev Yu. G., Eremeeva Zh. V. et. al. Features of the use of unconventional carbon-containing components in the technology of powder steels. Message 1. Influence of unconventional carbon-containing components on sintering processes in powder steel technology. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2008. No. 1. pp. 6–9.
32. Kostikov V. I., Dorofeev Yu. G., Eremeeva Zh. V. et. al. Features of the use of unconventional carbon-containing components in the technology of powder steels. Message 2. Influence of unconventional carbon-containing components on sintering processes in powder steel technology. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2008. No. 4. pp. 5–8.
33. GOST 17022–81. Graphite. Types, marks and general technical requirements. Introduced: 01.01.1982.
34. Reva V. P., Moiseenko D. V., Onishchenko D. V. Efficiency of using high molecular weight compounds as surfactants. Poverkhnost. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya. 2012. No. 12. pp. 37–43.
35. Antsiferov V. N., Bashkirtsev G. V. Production of sediment resistant metallic powder suspensions for manufacturing of the powder multicomponent materials. Patent RF, No. 2442675. Applied: 06.04.2010. Published: 20.02.2012. Bulletin No. 5.
36. Dyuzhechkin М. К., Sergeenko S. N. Features of the mechanochemical activation of the Al – Si charge and formation of a hot-deformed powder material on its basis. Inzhenerniy vestnik Dona. 2014. No. 2. Available at:
37. Dyuzhechkin М. К., Sergeenko S. N., Popov Yu. V. Features of the formation of the structure and properties of hot-deformed materials of the Al – Si and Al – Si – C systems based on mechanochemically activated charges. Metallurg. 2015. No. 9. pp. 86–91.
38. GOST 24622–91. Plastics. Determination of hardness. Rockwell hardness. Introduced: 01.01.1993.
39. GOST 18318–94. Metallic powders. Determination of particle size by dry sieving. Introduced: 01.01.1997.
40. Polyakov A. P. On the effect of particle size on powder compaction. Zagotovitelnye proizvodstva v mashinostroenii. 2013. No. 4. pp. 24–28.
41. Novik F. S., Arsov Ya. B. Optimization of metal technology processes by methods of planning experiments. Moscow: Mashinostroenie, 1980. 298 p.
42. Matsuura K., Suzuki K., Ohmi T., Kudoh M. Dispersion strengthening in a hypereutectic Al–Si alloy prepared by extrusion of rapidly solidified powder. Metallurgical and Materials Transactions. 2004. No. 1. pp. 333–339.
43. Stepanov E. I., Grigoryev M. V., Kirko V. I. Effect of ultrafine Al2O3 additives on the physical and mechanical properties of corundum ceramics. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii. 2008. pp. 162–167.
44. Koichi Niihara, Atsushi Nakahira, Toshio Hirai. The effect of stoichiometry on mechanical properties of boron carbide. Journal of the American ceramic society. 1984. January.

Language of full-text russian
Full content Buy