Журналы →  Chernye Metally →  2025 →  №11 →  Назад

High-strength Cold-resistant Steels
Название Effect of chemical composition of high-strength steels of the C-Si-Mnalloying system on cold resistance
DOI 10.17580/chm.2025.11.09
Автор P. P. Poletskov, N. V. Koptseva, A. S. Kuznetsova, A. E. Gulin
Информация об авторе

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

P. P. Poletskov, Dr. Eng., Prof., Dept. of Metal Forming named after M. I. Boyarshinov
N. V. Koptseva, Dr. Eng., Prof., Dept. of Foundry Processes and Materials Science
A. S. Kuznetsova, Cand. Eng., Associate Prof., Engineering Center, e-mail: allakuznetsova.mgtu@mail.ru
A. E. Gulin, Cand. Eng., Associate Prof., Engineering Center

Реферат

The paper presents the results of a study on high-strength cold-resistant steels for heavy-duty vehicles based on C-Si-Mn system with three different alloying options having various contents of nickel, copper, molybdenum, as well as microalloying additives such as niobium, vanadium, titanium, and boron. In these steels, target mechanical properties values (YS ≥ 950 MPa, UTS ≥ 1200 MPa, δ5 ≥ 10%, HBW ≥ 350, KCV−70 ≥ 30 J/cm²) are achieved by quenching due to formation of mixed bainite-martensitic structure. It has been established that in C-Si-Mn steel alloyed with Ni+Mo+Cu up to 0.35 %, an increase in low temperature toughness is ensured by reducing carbon content down to 0.18 %. Simultaneous improvement in strength characteristics is achieved through increasing manganese content up to 1.29 %. When introducing Ni+Mo+Cu up to 2.0 % into the steel, the best combination of strength properties and low-temperature toughness is provided at carbon content up to 0.22 % and manganese content up to 0.75 %. Additionally, microaddition of titanium up to 0.030 % contributes slightly to the dispersion of bainite-martensitic structure. The optimal set of mechanical properties is reached in steel with similar element composition (Ni+Mo+Cu) up to 2.0 % within the range of 0.22 % C–0.75 % Mn through additional microalloying with Nb+V up to 0.075 %. Microadditions of niobium and vanadium had a decisive influence on low-temperature toughness by enhancing the dispersion of low-temperature transformation products of austenite. An increase in alloying elements content (Ni+Mo+Cu) above 2.0 % does not provide significant growth in strength properties compared to first option alloys.

Ключевые слова Cold-resistant high-strength steels, alloying system, quenching, structure, mechanical properties, impact toughness, strength
Библиографический список

1. Poletskov P. P., Gulin A. E., Emaleeva D. G. et al. Analysis of current research directions in the field of production of multifunctional materials for extreme operating conditions. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2021. Vol. 19. No. 3. pp. 109–114.
2. Khlusova E. I., Sych O. V. Development of cold-resistant structural materials for the Arctic. History, experience, current status. Innovatsii. 2018. No. 11 (241). pp. 85–92.
3. Adishchev P. G., Tselischev A. S., Khavrin I. A. Review of cold-resistant high-strength steels. Stal. 2025. No. 3. pp. 29–32.
4. Khlusova E. I., Sych O. V., Orlov V. V. Cold-resistant steels. Structure, properties, technologies. FMM. 2021. Vol. 122. No. 6. pp. 621–657.
5. Popov A. V., Khudyakova V. A., Sevastyanov G. M. et al. The influence of alloying elements on characteristics of steels intended for use in low and cryogenic temperatures. Problemy chernoy metallurgii i materialovedeniya. 2024. No. 4. pp. 108–121.
6. Khlusova E. I., Golosienko S. A., Motovilina G. D. et al. The influence of alloying on the structure and properties of high-strength cold-resistant steel after heat and thermomechanical treatment. Voprosy materialovedeniya. 2007. No. 1 (49). pp. 20–32.
7. Nikitin V. N., Nastich S. Yu., Smirnov L. A. et al. High-strength steels with sparing alloying for quarry transport and mining equipment. Stal. 2016. No. 10. pp. 57–66.
8. Poletskov P. P., Koptseva N. V., Efimova Yu. Yu., Kuznetsova A. S. Experimental study of crack resistance during welding of high-strength steel with increased cold resistance. Chernye Metally. 2024. No. 12. pp. 35–40.
9. Poletskov P. P., Koptseva N. V., Efimova Yu. Yu., Kuznetsova A. S. Development and research of forming the properties in cold resistant steels with strength class not less than 950 MPa for the components of heavy carrying and lifting machines. CIS Iron and Steel Review. 2024. Vol. 28. pp. 63–68.
10. Shilyaev P. V., Bogach D. I., Krasnov M. L. et al. Mechanical properties and structural state of sheet metal products made of high-strength wear-resistant weldable steel H500 MAGSTRONG. Metallovedenie i termicheskaya obrabotka metallov. 2020. No. 11 (785). pp. 8–12.
11. Poletskov P. P., Koptseva N. V., Efimova Yu. Yu., Kuznetsova A. S. Influence of heat treatment on forming the complex of properties for high-strength cold-resistance steel. CIS Iron and Steel Review. 2023. Vol. 25. pp. 73–78.
12. Nikitina V. R., Pazilova U. A., Khlusova E. I. The influence of vanadium and niobium on phase transformations in chromium-nickel-molybdenum shipbuilding steel. Voprosy materialovedeniya. 2023. No. 2 (114). pp. 15–26.
13. Tarasov G. F., Gorbulya A. I. Heat treatment of steels as a factor in increasing their wear resistance at low temperatures. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva. 2005. No. 3. pp. 253–257.
14. De-Castro D., Eres-Castellanos A., Vivas J., Caballero F. G., San-Martin D., Capdevila C. Morphological and crystallographic features of granular and lath-like bainite in a low carbon microalloyed steel. Mater. Characterization. 2022. Vol. 184. 111703. DOI: 10.1016/j.matchar.2021.111703
15. Maysuradze M. V., Yudin Yu. V., Kuklina A. A. Increasing impact toughness during the formation of a bainitic structure in HY-TUF high-strength steel. Metallurg. 2019. No. 8. pp. 69–76.
16. Caballero F. G., Roelofs H., Hasler St., Capdevila C. et al. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater. Sci. and Technol. 2012. Vol. 28. pp. 95–102. DOI: 10.1179/1743284710Y.0000000047
17. Rampelberg C., Allain S. Y. P., Geandier G., Teixeira J., Lebel F., Sourmail T. Carbide-free bainite transformations above and below martensite start temperature investigated by in-situ high-energy X-ray diffraction. JOM. 2021. Vol. 73. pp. 3181–3194. DOI: 10.1007/s11837-021-04903-8
18. Maysuradze M. V., Kuklina A. A., Ryzhkov M. A. et al. Features of bainite formation in 20Kh2G2SNMA steel during isothermal hardening. Metallurg. 2023. No. 7. pp. 23–32.
19. GOST 7564-97. Rolled products. General rules for sampling, rough specimens, and test pieces for mechanical and technological testing. Introduced: 01.01.1999.
20. GOST 1497-84. Metals. Methods of tension test. Introduced: 01.01.1986.
21. GOST 9454-78. Metals. Method for testing impact strength at low, room, and high temperature. Introduced: 01.01.1979
22. GOST 9012-59. Metals. Method of Brinell hardness measurement. Introduced: 01.01.1960.
23. Poletskov P. P., Koptseva N. V., Kuznetsova A. S. et al. Creation of sparingly alloyed coldresistant steels with a strength level of at least 950 MPa for heavy-duty equipment. Metallovedenie i termicheskaya obrabotka metallov. 2024. No. 12 (834). pp. 17–24.
24. GOST 8233-56. Steel. Microstructure standards. Introduced: 01.01.1957.

Language of full-text русский
Полный текст статьи Получить
Назад