Journals →  Obogashchenie Rud →  2025 →  #5 →  Back

BENEFICIATION PROCESSES
ArticleName Bioleaching of sulfide ores using non-metallic intensifying additives
DOI 10.17580/or.2025.05.02
ArticleAuthor Averyanova V. E.
ArticleAuthorData

Scientific and Research Geotechnological Center of the Far Eastern Branch of RAS (Petropavlovsk-Kamchatsky, Russia)

Averyanova V. E., Junior Researcher, Purlac@inbox.ru

Abstract

The practical application of bioleaching for sulfide ores is often limited by the lengthy process duration and low recovery rates of target metals, making it less attractive compared to conventional extraction methods. Enhancing the rate and efficiency of bioleaching is essential to improve its economic viability, particularly for lowgrade ores containing small amounts of valuable components such as non-ferrous metal sulfides and pyrite. Optimizing bioleaching is a multifaceted challenge that requires a tailored approach, considering the specific mineralogical characteristics of the ore (e.g., composition, porosity), the chemical properties of the metals to be extracted (e.g., oxidation state, tendency to form complexes), and process parameters (e.g., temperature, pH, oxygen concentration). This study investigates the potential of non-metallic catalytic additives to enhance the bioleaching of metals from low-grade ores. Various additives—including chlorides, iodine, sulfur-containing organic compounds, and surfactants—were evaluated for their ability to accelerate dissolution and improve process efficiency. Some additives promote the oxidation of sulfide minerals, while others enhance ore permeability or facilitate microbial access to target metals. Notably, the synergistic effects of combining different additives may offer the most significant improvements in bioleaching performance. The effectiveness of these additives is highly dependent on the ore type, the microorganisms employed, and the cultivation conditions. Therefore, identifying optimal combinations of additives and process parameters remains a critical area for further research.

keywords Bioleaching, kinetics, biohydrometallurgy, oxidizers, surfactants, amino acids, sulfur-containing compounds
References

1. Averyanova V. E., Ocheretyana S. O. Ways to improve kinetics of a chalcopyrite bioleaching process: A review. Tsvetnye Metally. 2024. No. 7. pp. 30–36.
2. Bulaev A. G. New trends in biohydrometallurgy. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 3-1. pp. 56–87.
3. Oyama K., Okibe N. Graphitic activated carbon as a catalyst for enhancing bioleaching of enargite through redox potential control. Journal of Environmental Chemical Engineering. 2025. Vol. 13, Iss. 3. DOI: 10.1016/j.jece.2025.116581
4. Zhu P., Liu X., Chen A., Liu H., Yin H., Qiu G., Hao X., Liang Y. Comparative study on chalcopyrite bioleaching with assistance of different carbon materials by mixed moderate thermophiles. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 6. pp. 1294–1303.
5. Konadu K. T., Sakai R., Mendoza D. M., Chuaicham C., Miki H., Sasaki K. Effect of carbonaceous matter on bioleaching of Cu from chalcopyrite ore. Hydrometallurgy. 2020. Vol. 195. DOI: 10.1016/j.hydromet.2020.105363
6. Liu W., Yang H.-Y., Song Y., Tong L.-L. Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy. 2015. Vol. 152. pp. 69–75.
7. Liang C., Xia J., Zhao X., Yang Y., Gong S., Nie Z., Ma C., Zheng L., Zhao Y., Qiu G. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy. 2010. Vol. 105, Iss. 1–2. pp. 179–185.
8. Lugovitskaya T. N., Danilin L. M., Rogozhnikov D. A., Mamyachenkov S. V. Behavior of some surfactants in a nitric acid medium and prospects for their use in hydrometallurgy. Zhurnal Fizicheskoy Khimii. 2023. Vol. 97, No. 12. pp. 1769–1775.
9. Zhang H., Wei D., Liu W., Hou D., Zhang R. Enhancement mechanism of polyoxyethylene nonyl phenyl ether on the bioleaching of chalcopyrite. Minerals Engineering. 2021. Vol. 173. DOI: 10.1016/j.mineng.2021.107237
10. Ghadiri M., Harrison S. T. L., Fagan-Endres M. A. Effect of surfactant on the growth and activity of microorganisms in a heap bioleaching system. Minerals Engineering. 2019. Vol. 138. pp. 43–51.
11. Liu W., Yang H.-Y., Tong L.-L., Jin Z.-N. Catalytic effects of surfactants on the cobalt ore bioleaching. Journal of Northeastern University. 2015. Vol. 36, Iss. 6. pp. 814–818.
12. Zhang R., Sun C., Kou J., Zhao H., Wei D., Xing Y. Enhancing the leaching of chalcopyrite using Acidithiobacillus ferrooxidans under the induction of surfactant Triton X-100. Minerals. 2018. Vol. 9, Iss. 1. DOI: 10.3390/min9010011
13. Zhang R., Wei D., Shen Y., Liu W., Lu T., Han C. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering. 2016. Vol. 95. pp. 74–78.
14. Lan Z., Hu Y., Qin W. Effect of surfactant OPD on the bioleaching of marmatite. Minerals Engineering. 2009. Vol. 22, Iss. 1. pp. 10–13.
15. Peng A., Liu H., Nie Z., Xia J. Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China. 2012. Vol. 22, Iss. 12. pp. 3147–3155.
16. Sasaki K., Suyama I., Takimoto R., Konadu K. T., Ichinose H., Eksteen J. Complete gold extraction and recovery from double refractory gold ores by thiourea after biooxidation. Hydrometallurgy. 2024. Vol. 227. DOI: 10.1016/j.hydromet.2024.106330
17. Shumilova L. V., Khatkova A. N., Razmakhnin K. K., Prostakishin M. F. Cyanide-free gold extraction technology using methods of intensification of the leaching process. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 10-1. pp. 328–344.
18. Muravyov M. I., Melamud V. S., Fomchenko N. V. Biooxidation of high-sulfur products of ferric leaching of a zinc concentrate. Mikrobiologiya. 2020. Vol. 89, No. 2. pp. 180–188.
19. Rizki I. N., Tanaka Y., Okibe N. Thiourea bioleaching for gold recycling from e-waste. Waste Management. 2019. Vol. 84. pp. 158–165.
20. Ren Z., Krishnamoorthy P., Sanchez P. Z., Asselin E., Dixon D. G., Mora N. Catalytic effect of ethylene thiourea on the leaching of chalcopyrite. Hydrometallurgy. 2020. Vol. 196. DOI: 10.1016/j.hydromet.2020.105410
21. Jia Y., Yang Q., Zhang L., Tan Q., Ruan R., Qu J. Enhanced chalcopyrite bioleaching by thiourea compounds: Mechanism and implication. 2025. Available at SSRN. DOI: 10.2139/ssrn.5234317
22. Winarko R., Dreisinger D. B., Miura A., Fukano Y., Liu W. Characterization of the solid leach residues from the iodine-assisted chalcopyrite leaching in ferric sulfate media. Hydrometallurgy. 2024. Vol. 226. DOI: 10.1016/j.hydromet.2024.106302
23. Chen W., Tang H., Yin S., Wang L., Zhang M. Copper recovery from low-grade copper sulfides using bioleaching and its community structure succession in the presence of Sargassum. Journal of Environmental Management. 2024. Vol. 349. DOI: 10.1016/j.jenvman.2023.119549
24. Chen W., Tang H., Yin S. Bioleaching of low-grade copper sulfide enhanced by nutrients from sterilized medical waste. Process Safety and Environmental Protection. 2024. Vol. 188. pp. 1527–1535.
25. Al-Harahsheh M., Kingman S., Al-Harahsheh A. Ferric chloride leaching of chalcopyrite: Synergetic effect of CuCl2. Hydrometallurgy. 2008. Vol. 91, Iss. 1–4. pp. 89–97.
26. Dutrizac J. E. The leaching of sulphide minerals in chloride media. Hydrometallurgy. 1992. Vol. 29, Iss. 1–3. DOI: 10.1016/0304-386X(92)90004-J
27. Vakylabad A. B., Nazari S., Darezereshki E. Bioleaching of copper from chalcopyrite ore at higher NaCl concentrations. Minerals Engineering. 2022. Vol. 175. DOI: 10.1016/j.mineng.2021.107281
28. Bevilaqua D., Lahti H., Suegama P. H., Garcia O. Jr., Benedetti A. V., Puhakka J. A., Tuovinen O. H. Effect of Nachloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors. Hydrometallurgy. 2013. Vol. 138. DOI: 10.1016/j.hydromet.2013.06.008
29. Bobadilla-Fazzini R. A., Cortés M. P., Maass A., Parada P. Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion. AMB Express. 2014. Vol. 4. DOI: 10.1186/s13568-014-0084-1
30. Kordloo M., Abdollahi H., Gharabaghi M., Yadollahi A., Rezaei A. Evaluation of the effects of L-cysteine addition on the bioleaching of zinc and cadmium from sphalerite flotation concentrate. Minerals Engineering. 2023. Vol. 204. DOI: 10.1016/j.mineng.2023.108379

31. Kordloo M., Abdollahi H., Gharabaghi M., Yadollahi A., Rezaei A., Ghanbarzad M. Comparing additives effects on bioleaching efficiency of Cd-bearing ZnS concentrate in mesophilic conditioning at high pulp density. Minerals Engineering. 2024. Vol. 218. DOI: 10.1016/j.mineng.2024.109033
32. Ghosh B., Mukhopadhyay B. P., Bairagya H. R. Effect of amino acids on bioleaching of chalcopyrite ore by Thiobacillus ferrooxidans. African Journal of Biotechnology. 2012. Vol. 11, Iss. 8. pp. 1991–1996.
33. Krasnoshtanova A. A., Panfilov V. I. Use of aminoacids and the protein hydrolysates from yeast to recover copper from ore by dissolution. Tsvetnye Metally. 2019. No. 10. pp. 12–17.
34. Yachkula A., Rozova O., Abashina T., Vainshtein M., Grouzdev D., Bulaev A. Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk. Minerals. 2022. Vol. 12, Iss. 8. DOI: 10.3390/min12081051

Language of full-text russian
Full content Buy
Back