Journals →  Obogashchenie Rud →  2025 →  #4 →  Back

BENEFICIATION PROCESSES
ArticleName Enhancement of insoluble residue removal from high-calcium sulfate sylviniteore via ultrasonic pretreatment
DOI 10.17580/or.2025.04.03
ArticleAuthor Chernyshev A. V., Poylov V. Z., Stromsky A. S., Stromsky A. A.
ArticleAuthorData

Perm National Research Polytechnic University (Perm, Russia)

Chernyshev A. V., Postgraduate Student, alexcher-1997@yandex.ru
Poilov V. Z., Professor, Doctor of Engineering Sciences, Professor, vladimirpoilov@mail.ru

 

ProTech Lab, Mining and Processing Center (St. Petersburg, Russia)
Stromskiy A. S., Advisor, anatoly.stromsky@pte.eurochem.ru
Stromskii A. A., Head of the Galurgy Laboratory, Candidate of Engineering Sciences, aleksandr.stromsky@pte.eurochem.ru

Abstract

This study investigates the effect of low-frequency ultrasonic pretreatment on the removal efficiency of calcium sulfate (CaSO4) and clay-salt insoluble residue (IR) from sylvinite ores with elevated calcium sulfate content. Ultrasonic treatment was applied to both the flotation feed and the rougher concentrate to improve desulfation and desliming performance. Particle-size and mineralogical analyses revealed that the –0.1 mm fraction of the ore contains the highest concentration of impurities—up to 11.01 wt.% CaSO4 and 4.18 wt.% IR—primarily in the form of fine coatings on potassium and sodium chloride crystals. Additionally, CaSO4 is often present in semi-encapsulated forms located in microcracks, folds, and intergrowth zones, complicating its liberation during conventional processing. It has been established that ultrasonic treatment significantly enhances the removal of CaSO4 and IR due to the transient ultrasonic cavitation effect generated during acoustic energy exposure. At the maximum applied acoustic power of 420 W, the desulfation efficiency reached 34.36 %, while IR removal achieved 51.49 %. However, residual anhydrite persisted in isolated inclusions in inaccessible zones of the ore matrix, such as cracks, folds, and intergrowths. Ultrasonic pretreatment of the flotation feed increased the recovery of CaSO4 and IR to the slime fraction by 9.33 % during selective anhydrite flotation and by 3.98 % during combined anhydrite–sylvinite flotation. Treatment of the flotation feed and rougher concentrate, separately and in combination, resulted in reductions of CaSO4 and IR content in the final concentrate by 0.41 %, 0.58 %, and 1.15 %, respectively.

keywords Sylvinite, ultrasonic slurry treatment, calcium sulfate, clay-salt slimes, desulfurization, desliming, flotation feed, rougher concentrate
References

1. Rylnikova M. V., Berger R. V., Yakovlev I. V., Tatarnikov V. I., Zubkov P. O. Backfill technologies and designs for
deep-level sylvinite mining. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2024. No. 2. pp. 167–176.
2. Titkov S. N., Mamedov A. I., Solovyov E. I. Enrichment of potash ores. Moscow: Nedra, 1982. 216 p.
3. Samantray J., Anand A., Dash B., Ghosh M., Behera A. Silicate minerals — Potential source of potash — A review. Minerals Engineering. 2022. Vol. 179. DOI: 10.1016/j.mineng.2022.107463
4. Nisina O. E., Lanovetskiy S. V., Kosvintsev O. K., Kulikov M. A. Study of the extraction process of calcium sulfate impurity from halite wastes of various origins. Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya i Khimicheskaya Tekhnologiya. 2022. No. 65. pp. 101-107.
5. Chen Y., Truong N. T., Bu X., Xie G. A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry. 2020. Vol. 60. DOI: 10.1016/j.ultsonch.2019.104739
6. Filippov L. O., Filippova I. V., Barres O., Lyubimova T. P., Fattalov O. O. Intensification of the flotation separation of potash ore using ultrasound treatment. Minerals Engineering. 2021. Vol. 171. DOI: 10.1016/j.mineng.2021.107092
7. Gungoren C., Baktarhan Y., Demir I., Ozkan S. Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound. Transactions of Nonferrous Metals Society of China. 2020. Vol. 30, No. 4. pp. 1102–1110.
8. Misra M., Raichur A. M., Lan A. P. Improved flotation of arsenopyrite by ultrasonic pretreatment. Mining, Metallurgy & Exploration. 2003. Vol. 20, No. 2, pp. 93–97.
9. Cao Q., Cheng J., Feng Q., Wen S., Luo B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology. 2017. Vol. 311. pp. 390–397.
10. Xu M., Xing Y., Gui X., Cao Y., Wang D., Wang L. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels. 2017. Vol. 31, No. 12. pp. 14367–14373.
11. Burov V. E., Poilov V. Z., Huang Z., Chernyshev A. V., Kuzminykh K. G. Effect of sonochemical pretreatment of slurry depressors on sylvin flotation performance. Gornye Nauki i Tekhnologii. 2022. Vol. 7, No. 4. pp. 298-309.
12. Chernyshev A. V., Poilov V. Z., Burov V. E., Kuzminykh K. G. Effect of ultrasonic treatment on physicochemical characteristics of flotation collectors used in sylvinite ore desliming. Obogashchenie Rud. 2023. No. 5. pp. 25–30.
13. Burov V. E. Capabilities of sonochemistry in flotation of ore minerals. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 36–51.
14. Vakhrushev V. V., Poilov V. Z., Kosvintsev O. K., Fedotova O. A. Kinetics of silvinite ore desliming during ultrasonic treatment. Inzhenernyi Vestnik Dona. 2013. No. 2. pp. 47–54.
15. Donskoi E., Poliakov A. Advances in optical image analysis textural segmentation in ironmaking. Applied Sciences. 2020. Vol. 10, Iss. 18. DOI: 10.3390/app10186242

Language of full-text russian
Full content Buy
Back