Journals →  Обогащение руд →  2025 →  #4 →  Back

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ СЫРЬЯ
ArticleName Усовершенствование методики гидролитической очистки цинкового электролита от примесей селена, теллура и мышьяка
DOI 10.17580/or.2025.04.06
ArticleAuthor Утанов Ф. Д., Атакулова Н. А., Кутлимуротова Н. Х., Ахмадова Д. А.
ArticleAuthorData

АО «Алмалыкский ГМК», Алмалык, Республика Узбекистан

Утанов Ф. Д., инженер

 

Алмалыкский филиал Ташкентского государственного технического университета имени Ислама Каримова, Алмалык, Республика Узбекистан

Атакулова Н. А., доцент (и. о.), PhD по хим. технологиям, nargizajumanova9@gmail.com

 

Национальный университет Узбекистана имени Мирзо Улугбека, Ташкент, Республика Узбекистан

Кутлимуротова Н. Х., профессор, д-р хим. наук, профессор, nigora.qutlimurotova@mail.ru

Ахмадова Д. А., аспирант, dilsoraaxmadova@gmail.com

Abstract

Рассматриваются методы гидрометаллургической очистки цинкового электролита от вредных примесей селена, теллура и мышьяка. Разработан и экспериментально подтвержден эффективный способ очистки, заключающийся в добавлении железистого раствора. Этот метод позволяет значительно снизить концентрацию указанных примесей, что положительно сказывается на качестве электролита и выходе металла при электролизе. Данный подход не только сохраняет химическую чистоту электролита, но и снижает энергозатраты на рафинирование, оптимизирует технологические процессы.

keywords Гидролитическая очистка, цинковый электролит, селен, теллур, мышьяк, железо, электролиз, минералогический анализ
References

1. Yang Ch., Sun B. Modeling, optimization, and control of zinc hydrometallurgical purification process. Academic Press, Elsevier Inc., 2021. 230 p.
2. Zeng P., Wang Ch., Li M., Wei Ch. Volatilization behavior of lead, zinc and sulfur from flotation products of low-grade Pb-Zn oxide ore by carbothermic reduction. Powder Technology. 2023. Vol. 433. DOI: 10.1016/j.powtec.2023.119185
3. Kolesnikov A. V., Fominykh I. M. Parameters of electrolysis of zinc sulfate solutions. Butlerovskie Soobshcheniya. 2017. Vol. 51, No. 8. p. 89.
4. Liu Q., Zhao Y., Zhao G. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy. 2011. Vol. 110, Iss. 1–4. pp. 79–84.
5. Zhunusova G. Zh., Altaybaev B. T., Kalyanova O. A. Obtaining zinc oxide from a sulfuric acid solution of autoclave leaching of zinc-containing waste. Fundamentalnye i Prikladnye Issledovaniya: Problemy i Rezultaty. 2014. No. 15. pp. 120–124.
6. Kazanbaev L. A., Kozlov P. A., Kubasov V. L., Kolesnikov A. V. Zinc hydrometallurgy. Purification of solutions and electrolysis. Moscow: «Ore and Metals» Publishing House, 2006. 176 p.
7. Xu Y., Xia H., Zhang Q., et al. Green and efficient recovery of valuable metals from by-products of zinc hydrometallurgy and reducing toxicity. Journal of Cleaner Production. 2022. Vol. 380, Iss. 3. DOI: 10.1016/j.jclepro.2022.134993
8. Kyle J. H., Breuer P. L., Bunney K. G., Pleysier R. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part II. Deportment in gold ore processing by cyanidation. Hydrometallurgy. 2012. Vol. 111–112. pp. 10–21.
9. Abkhoshk E., Jorjani E., Al-Harahsheh M. S., et al. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. 2014. Vol. 149. pp. 153–167.
10. Lampinen M., Laari A., Turunen I. Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration. Hydrometallurgy. 2015. Vol. 153. pp. 160–169.
11. Bondareva O. S., Dobychina O. S. Analyzing possible use of cathode zinc in zinc pots. Tsvetnye Metally. 2024. No. 1. pp. 84–90.
12. Omarova N. K., Sherembaeva R. T., Katkeeva G. L., Mukhtar A. A. Improving zinc flotation performance when processing lead-zinc ores. Obogashchenie Rud. 2024. No. 1. pp. 63–69.
13. Yang T., Rao S., Zhang D., et al. Leaching of low grade zinc oxide ores in nitrilotriacetic acid solutions. Hydrometallurgy. 2016. Vol. 161. pp. 107–111.
14. Zhang F., Wei C., Deng Z., et al. Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant. Hydrometallurgy. 2016. Vol. 161. pp. 102–106.
15. Ashtari P., Pourghahramani P. Selective mechanochemical alkaline leaching of zinc from zinc plant residue. Hydrometallurgy. 2015. Vol. 156. pp. 165–172.
16. Golik V. I., Klyuev R. V., Martyushev N. V., et al. Tailings utilization and zinc extraction based on mechanochemical activation. Materials. 2023. Vol. 16, Iss. 2. DOI: 10.3390/ma16020726
17. Golik V. I., Kondratiev Yu. I., Khulelidze K. K., et al. Leaching of lead and zinc from mechanically activated tailings of beneficiation of polymetallic ores. Ustoychivoye Razvitie Gornykh Territoriy. 2011. No. 51. pp. 51–56.
18. Turysbekov D. K., Semushkina L. V., Narbekova S. M., Mukhanova A. A. Studies on the use of iron-containing reagents in the separation of bulk copper-lead concentrates. Obogashchenie Rud. 2019. No. 4. pp. 13–19.
19. Khalezov B. D., Vatolin N. A., Makurin Yu. N., Bykov N. A. Extraction of zinc from copper-zinc ore leaching solutions. Gornyi Informatsionno-analiticheskiy Byulleten'. 2005. No. 3. pp. 260–265.

Language of full-text russian
Full content Buy
Back