Journals →  Цветные металлы →  2025 →  #8 →  Back

Композиционные материалы и многофункциональные покрытия
ArticleName Возможность использования неразъемной испаряемой пластиковой формы, полученной методом 3D-печати, для формования твердосплавной фрезы
DOI 10.17580/tsm.2025.08.04
ArticleAuthor Дворник М. И., Михайленко Е. А., Бурков А. А., Черняков Е. В.
ArticleAuthorData

Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук Институт материаловедения Дальневосточного отделения Российской академии наук (ИМ ДВО РАН), Хабаровск, Россия

М. И. Дворник, старший научный сотрудник, канд. техн. наук, эл. почта: maxxxx80@mail.ru
Е. А. Михайленко, старший научный сотрудник, канд. физ.-мат. наук, эл. почта: mea80@list.ru
А. А. Бурков, старший научный сотрудник, канд. физ.-мат. наук, эл. почта: burkovalex@mail.ru
Е. В. Черняков, лаборант, эл. почта: tchernyakoffevgeny@yandex.ru

Abstract

Проведены исследования прессования заготовок фрезы из твердого сплава WC – 5TiC – 10Cо в испаряемые пресс-формы из полилактида, полученные методом 3D-печати, и последующего спекания образцов в вакуумной печи. Содержание пластификатора (каучука) в порошковых смесях для прессования заготовок образцов сплава WC – 5TiC – 10Cо составляло, % (об.): 13; 23; 38; 48. Одноразовые формы для прессования фрез были изготовлены из полилактида методом наплавки. Опытным путем установлено, что заключенные в стальную оболочку такие пластиковые пресс-формы выдерживают давление 400 МПа. Исследованы зависимости целостности и плотности заготовок и спеченных образцов от давления прессования и концентрации пластификатора. Установлено, что увеличение его концентрации с 13 до 48 % (об.) ведет к снижению относительной плотности спеченных образцов с 99,2 до 96,0 % из-за роста концентрации включений свободного углерода. В результате исследований обнаружено, что при концентрации пластификатора менее 38 % (об.) образцы разрушаются из-за термических напряжений. Изделия, полученные при использовании 48 % (об.) пластификатора, сохраняют целостность. Исследованы микроструктуры поверхности, продольного и поперечного сечений спеченных фрез. Несмотря на достижение требуемой плотности, поверхностные дефекты и высокая пористость (из-за наличия свободного углерода и дефектов, образованных при деформации формы) не позволяют получать изделия, отвечающие современным требованиям. Необходимы дальнейшие исследования для производства по предлагаемой методике фрез, отвечающих современным требованиям.

Работа выполнена при поддержке гранта РНФ № 23-29-00063.

keywords Твердый сплав, WC – 5 TiC – 10 Cо, пластификатор, FDM 3D-печать, пресс-форма, полилактид, прессование, фреза, спекание, плотность
References

1. Dvornik M. I., Mikhaylenko E. A. Production of gradient ultrafine-grained hard alloys from powders obtained from scrap VK15 alloy dispersed in water and scrap VK8 alloy dispersed in oil. Tsvetnye Metally. 2021. No. 3. pp. 84–90.
2. Dvornik M. I., Mikhailenko E. A. Study of the composition, structure and properties of a graded hard alloy as a result of sintering of ultrafine-grained and medium-grained layers. Tsvetnye Metally. 2018. No. 4. pp. 67–72.
3. Buravlev I. Y., Shichalin O. O., Belov A. A., Marmaza P. A. et al. Microstructural evolution and mechanical behavior of WC – 4wt.%TiC –3wt.%TaC –12wt.%Co refractory cermet consolidated by spark plasma sintering of mechanically activated powder mixtures. Advanced Powder Technology. 2024. Vol. 35, No. 10. 104625.
4. Dvornik M. I., Mikhailenko E. A. Preparation of powder by electrical discharge erosion and sintering of ultrafine WC – 5 TiC – 10 Co alloy with high hardness. International Journal of Refractory Metals and Hard Materials. 2023. Vol. 112. 106154.
5. Buravlev I. Y., Shichalin O., Papynov E., Golub A. et al. WC – 5 TiC – 10 Co hard metal alloy fabrication via mechanochemical and SPS techniques. International Journal of Refractory Metals and Hard Materials. 2021. Vol. 94. 105385.
6. Mokritskiy B., Solovyov V., Vereshchagin V., Sablin P. Improving the competitiveness of carbide end mills. Uprochnyayushchie Tekhnologii i Pokrytiya. 2017. No. 6. pp. 247–250.
7. Anikeev A. I., Vereshchaka A. A., Vereshchaka A. S., Bublikov Yu. I. Ultrafine hard alloys as a tool material for milling hard-to-process materials. Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Tekhnicheskie nauki. 2015. No. 3. pp. 152–162.
8. Yang Y., Zhang C., Wang D., Nie L. et al. Additive manufacturing of WC – Co hardmetals: a review. International Journal of Advanced Manufacturing Technology. 2020. Vol. 108, No. 506. pp. 1653–1673.
9. Aramian A., Razavi S. M. J., Sadeghian Z., Berto F. A review of additive manufacturing of cermets. Additive Manufacturing. 2020. Vol. 33. 101130.
10. Chen C., Huang B., Liu Z., Li Y. et al. Additive manufacturing of WC – Co cemented carbides: process, microstructure, and mechanical properties. Additive Manufacturing. 2023. Vol. 63. 103410.
11. Chen J., Huang M. J., Fang Z. Z., Koopman M. et al. Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting. International Journal of Refractory Metals & Hard Materials. 2019. Vol. 84. 104980.
12. Li C. W., Chang K. C., Yeh A. C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. Journal of Alloys and Compounds. 2019. Vol. 782. pp. 440–450.
13. Gu D. D., Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2010. Vol. 527, No. 29-30. pp. 7585–7592.
14. Domashenkov A., Borbely A., Smurov I. Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting. Materials and Manufacturing Processes. 2017. Vol. 32, No. 1. pp. 93–100.
15. Fortunato A., Valli G., Liverani E., Ascari A. Additive manufacturing of WC – Co cutting tools for gear production. Lasers in Manufacturing and Materials Processing. 2019. Vol. 6, No. 3. pp. 247–262.
16. Khmyrov R. S., Shevchukov A. P., Gusarov A. V., Tarasova T. V. Phase composition and microstructure of WC – Co alloys obtained by selective laser melting. Mechanics & Industry. 2017. Vol. 18, No. 7. 714.
17. Khmyrov R. S., Safronov V. A., Gusarov A. V. Obtaining crack-free WC – Co alloys by selective laser melting. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016. 2016. Vol. 83. pp. 874–881.
18. Grigoriev S., Tarasova T., Gusarov A., Khmyrov R., Egorov S. Possibilities of manufacturing products from cermet compositions using nanoscale powders by additive manufacturing methods. Materials. 2019. Vol. 12, Iss. 20. 3425.
19. Khmyrov R. S., Safronov V. A., Gusarov A. V. Synthesis of nanostructured WC – Co hardmetal by selective laser melting. Iutam Symposium on Growing Solids. 2017. Vol. 23. pp. 114–119.
20. Uhlmann E., Bergmann A., Bolz R. Manufacturing of carbide tools by selective laser melting. 15th Global Conference on Sustainable Manufacturing. 2018. Vol. 21. pp. 765–773.
21. Bricín D., Kříž A. Processability of WC –Co powder mixtures using SLM additive technology. MM Science Journal. 2019. Vol. 2. pp. 2939–2945.
22. Uhlmann E., Bergmann A., Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. 15th Machining Innovations Conference for Aerospace Industry (MIC). Vol. 35 : Procedia CIRP – Garbsen, Germany, 2015. pp. 8–15.
23. Ku N., Pittari J. J., Kilczewski S., Kudzal A. Additive manufacturing of cemented tungsten carbide with a cobalt-free alloy binder by selective laser melting for high-hardness applications. JOM. 2019. Vol. 71, Iss. 4. pp. 1535–1542.
24. Campanelli S. L., Contuzzi N., Posa P., Angelastro A. Printability and microstructure of selective laser melting of WC/Co/Cr powder. Materials. 2019. Vol. 12, Iss. 15. 2397.
25. Zhang L., Hu C., Yang Y., Misra R. et al. Laser powder bed fusion of cemented carbides by developing a new type of Co coated WC composite powder. Additive Manufacturing. 2022. Vol. 55. 102820.
26. Suzuki A., Shiba Y., Ibe H., Takata N., Kobashi M. Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide. Additive Manufacturing. 2022. Vol. 59. 103089.
27. Maurya H., Kosiba K., Juhani K., Sergejev F., Prashanth K. Effect of powder bed preheating on the crack formation and microstructure in ceramic matrix composites fabricated by laser powder-bed fusion process. Additive Manufacturing. 2022. Vol. 58. 103013.
28. Mostafaei A., De Vecchis P. R., Kimes K. A., Elhassid D., Chmielus M. Effect of binder saturation and drying time on microstructure and resulting properties of sinter-HIP binder-jet 3D-printed WC-Co composites. Additive Manufacturing. 2021. Vol. 46. 102128.
29. Xu Z. K., Meenashisundaram G. K., Ng F. L. High-density WC – 45 Cr – 18Ni cemented hard metal fabricated with binder jetting additive manufacturing. Virtual and Physical Prototyping. 2022. Vol. 17, Iss. 1. pp. 92–104.
30. Mariani M., Goncharov I., Mariani D., De Gaudenzi G. P. et al. Mechanical and microstructural characterization of WC – Co consolidated by binder jetting additive manufacturing. International Journal of Refractory Metals & Hard Materials. 2021. Vol. 100. 105639.
31. Cramer C. L., Wieber N. R., Aguirre T. G., Lowden R. A., Elliott A. M. Shape retention and infiltration height in complex WC – Co parts made via  binder jet of WC with subsequent Co melt infiltration. Additive Manufacturing. 2019. Vol. 29. 100828.

32. Cramer C. L., Nandwana P., Lowden R. A., Elliott A. M. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Additive Manufacturing. 2019. Vol. 28. pp. 333–343.
33. Enneti R. K., Prough K. C., Wolfe T. A., Klein A et al. Sintering of WC – 12%Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals & Hard Materials. 2018. Vol. 71. pp. 28–35.
34. Enneti R. K., Prough K. C. Wear properties of sintered WC – 12%Co processed via Binder Jet 3D Printing (BJ3DP). International Journal of Refractory Metals & Hard Materials. 2019. Vol. 78. pp. 228–232.
35. Kim H., Kim J.-I., Do Kim Y., Jeong H., Ryu S.-S. Material extrusionbased three-dimensional printing of WC – Co alloy with a paste prepared by powder coating. Additive Manufacturing. 2022. Vol. 52. 102679.
36. Carreno-Morelli E., Alveen P., Moseley S., Rodriguez-Arbaizar M., Cardoso K. Three-dimensional printing of hard materials. International Journal of Refractory Metals & Hard Materials. 2020. Vol. 87. pp. 105110.
37. Zhang X. Y., Guo Z. M., Chen C. G., Yang W. W. Additive manufacturing of WC-20Co components by 3D gel-printing. International Journal of Refractory Metals & Hard Materials. 2018. Vol. 70. pp. 215–223.
38. Lengauer W., Duretek I., Fuerst M., Schwarz V. et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. International Journal of Refractory Metals & Hard Materials. 2019. Vol. 82. pp. 141–149.
39. Padmakumar M. Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques. Lasers Manuf. Mater. Process. 2020. Vol. 7. pp. 338–371.
40. Kim H., Kim J. I., Ryu S. S., Jeong H. Cast WC-Co alloy-based tool manufacturing using a polymeric mold prepared via digital light processing 3D printing. Materials Letters. 2022. Vol. 306. 130979.
41. Zhao Z. C., Li X. H., Zhang Y., He C. W. et al. Fabrication and mechanical properties of large-scale SiC impeller via vacuum gelcasting and pressureless sintering. International Journal of Applied Ceramic Technology. 2020. Vol. 17, Iss. 4. pp. 1713–1722.
42. Liu K., Zhou C. Y., Chen F. J., Sun H. J., Zhang K. Fabrication of complicated ceramic parts by gelcasting based on additive manufactured acetonesoluble plastic mold. Ceramics International. 2020. Vol. 46, Iss. 16. DOI: 10.1016/j.ceramint.2020.06.313
43. Montanaro L., Coppola B., Palmero P., Tulliani J. M. A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceramics International. 2019. Vol. 45, Iss 7. pp. 9653–9673.
44. Chen F. J., Liu K., Sun H. J., Shui Z. H. et al. Fabrication of complicated silicon carbide ceramic components using combined 3D printing with gelcasting. Ceramics International. 2018. Vol. 44, Iss. 1. pp. 254–260.
45. Dvornik M., Mikhailenko E., Burkov A. A., Kolzun D. 3D printed plastic molds utilization for WC-15Co cemented carbide cold pressing. International Journal of Refractory Metals and Hard Materials. 2023. Vol. 115, Iss. 23. DOI: 10.1016/j.ijrmhm.2023.106312
46. Dvornik M., Mikhailenko E., Burkov A., Chernyakov E. Investigation of the characteristics of WC – 5 TiC – 10 Co hard alloy cutting plates obtained using a plastic mold made by 3D printing. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2024. Vol. 18, Iss. 5. pp. 55–65.
47. Dvornik M. I., Mikhailenko E. A., Burkov A. A., Kolzun D. A. Dependence of Density, Hardness, Strength, and Dimensions of WC – 15 Co Hard Alloy Samples on the Plasticizer Content in Workpieces Obtained Using a Plastic Mold Made by 3D Printing. Inorganic Materials: Applied Research. 2024. Vol. 15, Iss. 5. pp. 1457–1465.
48. Dvornik M., Shichalin O., Mikhailenko E., Burkov A. et al. Uniaxial compaction and sintering of ZrO2 – 3 mol% Y2O3 using rubber and PEG solutions as binders. Materials Chemistry and Physics. 2024. Vol. 328. 129981.
49. GOST 3882–74. Sintered solid alloys. Grades. Introduced. 01.01.1976.

Language of full-text russian
Full content Buy
Back