Журналы →  Chernye Metally →  2023 →  №11 →  Назад

Heating and Heat treatment
Название Determination of rational heat treatment modes for new high-manganese austenitic steel using thermodynamic modeling
DOI 10.17580/chm.2023.11.12
Автор V. B. Deev, S. L. Arapov, A. A. Kosovich, E. M. Lesiv
Информация об авторе

Wuhan Textile University, Wuhan, China1 ; Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia2 ; National University of Science and Technology “MISIS”, Moscow, Russia3

V. B. Deev*, Dr. Eng., Expert Prof., Faculty of Mechanical Engineering and Automation1, Chief Researcher2, Prof., Dept. of Metal Forming3, e-mail: deev.vb@mail.ru

Engineering Construction Maintenance Ltd., Achinsk, Russia1Siberian Federal University, Krasnoyarsk, Russia2

S. L. Arapov, Chief Metallurgist1; Junior Researcher2, e-mail: arapovsl@yandex.ru


Siberian Federal University, Krasnoyarsk, Russia
A. A. Kosovich, Cand. Eng., Associate Prof., Dept. of Foundry, Senior Researcher, e-mail: akosovich@sfu-kras.ru
E. M. Lesiv, Cand. Eng., Associate Prof., Dept. of Foundry, e-mail: elesiv@sfu-kras.ru

*Correspondence author


This study is devoted to determining the optimal mode of heat treatment of highmanganese austenitic steel Fe–1.1C–16Mn–0.8Si–1.3Cr–Mo–Ni to improve the reliability of castings during operation under shock-abrasive wear. The microstructure and mechanical properties of samples subjected to heat treatment according to the mode applicable to alloyed analogues of 110G13L (Hadfield steel) were preliminary assessed: two-stage heating with holding at 600 and 1050 °C. The design of the state diagram of the studied material was carried out by the calculation method of thermodynamic phase transformations CALPHAD. The boundaries of the existence of carbide phases of the M7C3, M23C6 and M6C types in the temperature range from 0 to 1600 °C are established. Based on the analysis of the obtained data, the optimal mode of heat treatment was developed: three-stage heating with holding at 350 and 700 °C, followed by water quenching from a temperature of 1150 °C. In steel samples subjected to experimental processing, there is a decrease in grain size (23 %) and carbides (2 times), as well as an increase in impact strength (27 %) and abrasion resistance (3.7 %) with a decrease in hardness (4.8 %).
The work was carried out within the framework of the state assignment in the field of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (topic FZUN-2020-0015, state assignment of VlSU).

Ключевые слова Hadfield steel, heat treatment, CALPHAD, austenite, carbide phase, phase transformation, impact strength
Библиографический список

1. Chen C., Lv B., Ma H., Sun D., Zhang F. Wear behavior and the corresponding work hardening characteristics of Hadfield steel. Tribology International. 2018. Vol. 121. pp. 389–399. DOI: 10.1016/j.triboint.2018.01.044.
2. Varela L. B., Tressia G., Masoumi M., Bortoleto E. M. et al. Roller crushers in iron mining, how does the degradation of Hadfield steel components occur? Engineering Failure Analysis. 2021. Vol. 122. 105295. DOI: 10.1016/j.engfailanal.2021.105295.
3. Choudary U. V., Chang Y. A. Gibbs energies of formation of Mn3C, M(Fe, Mn)3C and Mn23C6 from the ternary phase equilibria in the Fe–Mn–C system. Calphad. 1978. Vol. 2. No. 2. pp. 169–185. DOI: 10.1016/0364-5916(78)90033-0.
4. Dement T. V., Popova N. A., Kurzina I. A. Effect of changes in Mn concentration on the phase composition and intragranular structure of the Fe–Mn–C alloy (1.2 wt. % C). Fundamentalnye problemy sovremennogo materialovedeniya. 2016. Vol. 13. No. 4. pp. 421–426.
5. Gorlenko D. A., Mikhalkina I. V., Feoktistov N. A. Effect of alloying with ferrochrome on the chemical composition and morphology of the carbide phase of Hadfield steel. Tekhnologii metallurgii, mashinostroeniya i materialoobrabotki. 2020. No. 19. pp. 101–106.
6. Chaykin A. V., Chaykin V. A., Lozov V. S., Kasimgazinov A. D. et al. Comparative analysis of the quality indicators of 110G13L steel, smelted using various modifiers and deoxidizing mixtures. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2018. Vol. 16. No. 1. pp. 19–25. DOI: 10.18503/1995-2732-2018-16-1-19-25.
7. Bolobov V. I., Bochkov V. S., Mishin I. I., Nestruev A. A. On the influence of thermomechanical treatment modes on the wear resistance of materials of wear elements of mining and processing equipment. Gorny informatsionno-analiticheskiy byulleten. 2017. No. 1. pp. 52–59.
8. Pu J., Li Z., Hu Q., Wang Y. Effect of heat treatment on microstructure and wear resistance of high manganese steel surfacing layer. International Journal of Modern Physics B. 2019. Vol. 33, Iss. 01-03. 1940035. DOI: 10.1142/S0217979219400356.
9. Zellagui R., Hemmouche L., Bouchafaa H. et al. Effect of heat treatments on the microstructure, mechanical, wear and corrosion resistance of cast Hadfield steel. Inter Metalcast. 2022. Vol. 16. pp. 2050–2064. DOI: 10.1007/s40962-021-00751-z.
10. Baek S., Park M., Lee J. I., Kim S.-H. The Effects of post-welding heat treatment on the cryogenic absorbed energy of high manganese steel weld metal. Metals. 2023. Vol. 13, Iss. 6. 1126. DOI: 10.3390/met13061126.
11. Kroupa A. Modelling of phase diagrams and thermodynamic properties using Calphadm ethod – Development of thermodynamic databases. Computational Materials Science. 2013. Vol. 66. pp. 3–13. DOI: 10.1016/j.commatsci.2012.02.003.
12. Liu C., Shi Q., Yan W., Shen C. et al. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method. Journal of Materials Science & Technology. 2019. Vol. 35, Iss. 3. pp. 266–274. DOI: 10.1016/j.jmst.2018.07.002.
13. Gao J., Zhong J., Liu G., Yang S. et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application in high-throughput CALPHAD computation aiming at efficient alloy design. Advanced Powder Materials. 2022. Vol. 1, Iss. 1. DOI: 10.1016/j.apmate.2021.09.005.
14. San Martin D., Palizdar Y., Garcia-Mateo C. et al. Influence of aluminum alloying and heating rate on austenite formation in low carbon-manganese steels. Metall. Mater. Trans. A. 2011. Vol. 42. pp. 2591–2608. DOI: 10.1007/s11661-011-0692-1.
15. Lin S.-G., Yang H.-H., Su Y.-H., Chang K.-L. et al. CALPHAD-assisted morphology control of manganese sulfide inclusions in free-cutting steels. Journal of Alloys and Compounds. 2019. Vol. 779. pp. 844–855. DOI: 10.1016/j.jallcom.2018.11.290.
16. Dykas J., Samek L., Grajcar A., Kozlowska A. Modelling of phase diagrams and continuous cooling transformation diagrams of medium manganese steels. Symmetry. 2023. Vol. 15. 381. DOI:10.3390/sym15020381.
17. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G. Digital experiment as a method for improving the mechanical properties of Hadfield steel. Chernye Metally. 2022. No. 10. pp. 45–51.
18. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G. et al. Development of a digital model of the foundry process for manufacturing parts of mining and processing equipment. Liteyshchik Rossii. 2023. No. 1. pp. 15–17.
19. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G. et al. Development of a digital model of the influence of casting modes on the steel microstructure formation. Liteyshchik Rossii. 2023. No. 1. pp. 32–34.
20. Arapov S. L., Belyaev S. V., Kosovich A. A. et al. Application of mathematical statistics to improve Hadfield steel casting impact strength. Metallurgist. 2023. Vol. 66, Iss. 9-10. pp. 1083–1091. DOI: 10.1007/s11015-023-01421-7.
21. GOST 4755–91. Ferromanganese. Specification and conditions of delivery. Introduced: 01.01.1997.
22. GOST 6008–90. Metallic manganese and nitrided manganese. Specifications. Introduced: 01.07.1991.
23. GOST 4759–91. Ferromolybdenum. Specification and conditions of delivery. Introduced: 01.01.1993.
24. GOST 4757–91. Ferrochrome. Specification and conditions of delivery. Introduced: 01.01.1993.
25. GOST 849–2018. Primary nickel. Specifications. Introduced: 01.06.2019.
26. GOST 1415–93. Ferrosilicon. Specification and conditions of delivery. Introduced: 01.01.1997.
27. GOST 295–98. Aluminum for deoxidation, manufacture of ferroalloys and aluminothermy. Specifications. Introduced: 01.07.2001.
28. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012.
29. GOST 5639–82. Steels and alloys. Methods of detection and determination of grain size. Introduced: 01.01.1983.
30. GOST 9454–78. Metals. Method for testing impact strength at low, room and high temperature. Introduced: 01.01.1979.
31. GOST 9012–59. Metals. Method of Brinell hardness measurement. Introduced: 01.01.1960.
32. Saunders N., Guo U. K. Z., Li X. et al. Using JMatPro to model materials properties and behavior. JOM. 2003. Vol. 55. pp. 60–65. DOI: 10.1007/s11837-003-0013-2.
33. Guo Z., Saunders N., Miodownik P., Schille J.-P. Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels. International Journal of Microstructure and Materials Properties. 2009. Vol. 4. pp. 187–195. DOI: 10.1504/IJMMP.2009.028632.
34. Mishra S., Dalai R. A comparative study on the different heat-treatment techniques applied to high manganese steel. Materials Today: Proceedings. 2021. Vol. 44. pp. 2517–2520. DOI: 10.1016/j.matpr.2020.12.602.

Language of full-text русский
Полный текст статьи Получить