Journals →  Chernye Metally →  2023 →  #5 →  Back

Coating and Composite Materials
ArticleName The use of electrothermal treatment for modification of electrochemical iron - boron carbide composites
DOI 10.17580/chm.2023.05.09
ArticleAuthor Yu. E. Kisel, A. V. Kolomeichenko, V. B. Deev, N. Yu. Dudareva

Bryansk State Agrarian University, Bryansk, Russia1 ; Bryansk State Technological University of Engineering, Bryansk, Russia2:

Yu. E. Kisel, Dr. Eng., Associate Prof., Prof., Dept. of Electrical Equipment and Electrotechnologies1, Dept. of General Technical Disciplines and Physics2, e-mail:

Central Scientific Research Automobile and Automotive Engine Institute "NAMI", Moscow, Russia:
A. V. Kolomeichenko, Dr. Eng., Prof., Head of Advanced Technologies Dept., Center for Agricultural Engineering, e-mail:


Vladimir State University named after Alexander and Nikolai Stoletovs, Vladimir, Russia1 ; National University of Science and Technology "MISiS", Moscow, Russia2:
V. B. Deev, Dr. Eng., Chief Researcher1, Prof., Dept. of Metal Forming2, e-mail:


Ufa University of Science and Technology (UUNiT), Ufa, Russia:
N. Yu. Dudareva, Dr. Eng., Associate Prof., Prof., Dept. of Internal Combustion Engines, e-mail:


The results of studying the effect of electrothermal treatment on physical and mechanical properties of composite electrochemical coatings consisting of a matrix (electrolytic iron) and solid cermet dispersed fillers (oxides, carbides, borides) are presented. Electrothermal treatment was carried out on an induction hardening unit with high-frequency currents. The structure and mechanical properties of samples were studied after they were heated to various temperatures in the range of 200–1200 °C. The tensile strength, abrasive wear resistance, and microhardness of the samples were studied by standard methods. The dynamics of phase changes in the coating was studied using a derivatograph. The microstructure of the composite was studied from photographs of microsections obtained at various magnifications. When analyzing the results obtained, the nature of the change in the structure and mechanical properties of composites in different temperature regions of the above temperature range was considered. An analysis of the experimental data made it possible to establish a change in the structure and mechanical properties of composites as a result of electrothermal treatment, which leads to an increase in strength and wear resistance. It is revealed that the thermal effect has an optimization character.
The work was carried out within the framework of the state task in the field of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (subject FZUN-2020-0015, state task of VlGU).

keywords Сomposite electrochemical coatings, composite materials, heterogeneous materials, internal stresses, strength, microhardness, wear resistance, structure

1. Guryanov G. V. Electrodeposition of wear-resistant compositions. Kishinev: Shtinitsa, 1986. 240 p.
2. Guryanov G. V., Kisel Yu. Е. Wear-resistant electrochemical alloys and iron-based composites. Bryansk: Izdatelstvo BGITA, 2015. 98 p.
3. Gyawali G., Cho S. H., Lee S. W. Electrodeposition and characterization of Ni – TiB2 composite coatings. Met. Mater. Int. 2013. Vol. 19. pp. 113–118.
4. Bobanova Z. I., Dikusar A. I., Cesiulis H. et al. Micromechanical and tribological properties of nanocrystalline coatings of iron-tungsten alloys electrodeposited from citrate-ammonia solutions. Russ. J. Electrochem. 2009. Vol. 45. pp. 895–901.
5. Vasilyeva E. A., Tsurkan A. V., Protsenko V. S., Danilov F. I. Electrodeposition of composite Fe–TiO2 coatings from methanesulfonate electrolyte. Protection of Metals and Physical Chemistry of Surfaces. 2016. Vol. 52, Iss. 3. pp. 532–537.
6. Zhukova I. Y., Degtyar L. A., Bobrikova I. G. Kinetic characteristics of electrodeposition of Ni-Co-Аl2О3 composite coating. Key Engineering Materials. 2021. Vol. 887. pp. 325–331.
7. Lassner E., Schubert W. D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Springer, 1999. 422 p.
8. Kisel Y. E., Kravchenko I. N., Kuznetsov Y. A., Velichko S. A., Galinovskii A. L. Submicrostructure of "pure" electrolytic coatings. Russian Metallurgy (Metally). 2022. No. 6. pp. 660–665.
9. Kisel Y. E., Gorlenko A. O., Kolomeichenko A. V., Boldyrev D. A. Increasing the wear resistance of parts by iron-based polymer–metal composites. Steel in Translation. 2022. Vol. 52, Iss. 6. pp. 624–627.
10. Bratoeva M., Atanasov N. Effect of sulfamatecitrate electrolyte pH on the Ni–W alloy electrodeposition. Russ. J. Electrochem. 2000. Vol. 36. pp. 60–63.
11. Nishi Y., Mogi Y., Oguri K., Watanabe T. Preparation of Fe–W amorphous films by an electroplating method. J. Mater. Sci. Lett. 1995. Vol. 14. pp. 1–3.
12. Ghafer Z., Raeissi K., Golozar M. A., Edris H. Characterization of Nanocrystalline Co–W coatingson Cu substrate, electrodeposited from a citrateammonia bath. Surf. Coat. Technol. 2011. Vol. 206. pp. 497–505.
13. Belevskii S. S., Yushchenko S. P., Dikusar A. I. Anomalous electrodeposition of Co–W coatingsfrom a citrate electrolyte due to the formation of multinuclear heterometallic complexes in the solution. Surf. Eng. Appl. Electrochem. 2012. Vol. 48. pp. 97, 98.
14. Kisel Yu. Е., Guryanov G. V. Laser processing of composite electrochemical coatings. Traktory i selkhozmashiny. 2013. No. 4. pp. 53–55.
15. Devoyno О. G., Kardapolova М. А., Kalinichenko А. S. Technology of formation of wear-resistant iron-based coatings by laser processing methods: monograph. Minsk: BNNU, 2020. 280 p.
16. Antsiferov V. N. Powder material science: study guide. Perm: Izdatelstvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2011. 442 p.
17. Savich V. V., Oglezneva S. А. Powder metallurgy: current state and development prospects: monograph. Perm: Perm National Research Polytechnical University, 2021. 695 p.
18. Mchedlov S. G. Gas-thermal coating in the technology of hardening and restoration of machine parts. Flame and detonation spraying. Tekhnologiya mashinostroeniya. 2008. No. 6. pp. 35–46.
19. Puzryakov А. F. Theoretical foundations of plasma spraying technology. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2003. 360 p.
20. Hocking М., Vasantasree V., Sidky P. Metal and ceramic coatings. Edited by R. А. Andrievsky. Moscow: Mir, 2000. 516 p.
21. Lakhtin Yu. М. Metal science and heat treatment of metals. Moscow: Metallurgiya, 1993. 448 p.
22. Svechnikova L. А., Temnykh V. I., Tokmin А. М. Phase and structural transformations in metals and alloys. Krasnoyarsk: Siberian Federal University, 2019. 284 p.
23. Kisel Yu. Е., Guryanov G. V. Structure and some strength properties of electrolytic iron alloys. Uprochnyayushchie tekhnologii i pokrytiya. 2009. No. 7. pp. 25–30.
24. Labunets V. F., Voroshnin L. G., Kindarchuk М. V. Wear resistant boride coatings. Kishinev: Tekhnika, 1989. 158 p.
25. Smolnikov Е. А. Thermal and chemical-thermal treatment of tools in salt baths. Moscow: Mashinostroenie, 1989. 311 p.
26. Ivanov S. G., Garmaeva I. А., Androsov А. P., Zobnev V. V., Guryev А. М., Markov V. А. Phase transformations and structure of complex boride coatings. Polzunovskiy vestnik. 2012. No. 1/1. pp. 106–108.
27. Safonov А. I., Tarasova Т. V. Processes of laser alloying of steels with non-metallic components. Vestnik MGTU imeni Baumana. Seriya "Mashinostroenie". 1997. No. 2. pp. 69–77.
28. Balandin Yu. А. Complex saturation of the surface of tool steels with boron, copper and chromium in a fluidized bed. Izvestiya vuzov. Chernaya metallurgiya. 2005. No. 7. pp. 50–52.
29. Dombrovskiy Yu. М., Stepanov М. S. Formation of a composite boride coating on steel during microarc chemical-thermal treatment. Izvestiya vuzov. Chernaya metallurgiya. 2015. No. 3. pp. 214, 215.
30. Kisel Yu. Е., Guryanov G. V., Kisel P. Е. On structural changes in electrochemical coatings during high-temperature heating. Uprochnyayushchie tekhnologii i pokrytiya. 2010. No. 8. pp. 30–34.
31. Kisel Yu. Е. Increasing the durability of agricultural machinery parts by electrothermal treatment of composite electrochemical coatings: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Saratov, 2014. 40 p.
32. Yudina Е. М. Increasing the resource of restored parts of agricultural machinery with ironbased composite galvanic coatings: thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. Moscow, 1993. 16 p.
33. Gamburg Yu. D. Electrochemical crystallization of metals and alloys. Moscow: Yanus-К, 1997. 384 p.
34. Egunov V. P. Introduction to thermal analysis: monograph. Samara, 1996. 270 p.
35. GOST 23.208–79. Ensuring of wear resistance of products. Wear resistance testing of materials by friction against loosely fixed abrasive particles. Inroduced: 01.03.1983.
36. Gorelik S. S., Skakov Yu. А., Rastorguev L. N. X-ray and electron-optical analysis. Moscow: MISiS, 1994. 328 p.
37. Suvorov E. V. Physical foundations of experimental methods for studying the real structure of crystals. Chernogolovka: IFTT RAN, 2021. 209 p.
38. Vvedenskiy V. Yu., Lileev A. S., Perminov А. S. Experimental methods of physical material science. Moscow: Izdatelskiy dom MISiS, 2011. 310 p.
39. Kolemaev V. А., Staroverov О. V., Turundaevskiy V. B. Theory of probability and mathematical statistics. Moscow: Vysshaya shkola, 1991. 400 p.
40. Shchurin К. V., Kopylov О. А., Panin I. G. Planning and processing the results of the experiment. Korolev: MGOTU, 2019. 196 p.
41. Tkachev А. N. Planning and processing the results of the experiment. Novocherkassk: YuRGPU, 2015. 230 p.
42. Garmaeva I. А. Phase composition and kinetics of the formation of diffusion layers in the boriding of steels: thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. 2008. 16 p.
43. Golovin I. S. Internal friction and mechanical spectroscopy of metallic materials. Moscow: Izdatelskiy dom MISiS, 2012. 247 p.
44. Voroshnin L. G., Mendeleeva О. L., Setkin V. А. Theory and technology of chemical-thermal treatment: textbook for universities. Kiev: Novoe znanie, 2010. 304 p.
45. Guryev А. М., Kozlov E. V., Ignatenko L. N., Popova N. А. Physical basis of thermocyclic boriding. Barnaul: Izdatelstvo AltGTU, 2000. 250 p.

Language of full-text russian
Full content Buy