Журналы →  Chernye Metally →  2022 →  №12 →  Назад

Coating and Corrosion Protection
Название Overview of zinc melt alloying systems for hot dip galvanizing
DOI 10.17580/chm.2022.12.11
Автор O. S. Bondareva, O. S. Dobychina
Информация об авторе

Samara National Research University named after Academician S.P. Korolev, Samara, Russia:

O. S. Bondareva, Cand. Eng., Associate Prof., Dept. of Metal Technology and Aviation Materials Science, e-mail: osbond@yandex.ru
O. S. Dobychyna, Postgraduate Student, Dept. of Metal Technology and Aviation Materials Science

Реферат

Hot dip galvanizing is one of the most common and effective methods for obtaining protective coatings on building structures and various products. This process has been used for more than 150 years, but the last decades have seen a dynamic development of this technology in order to reduce the consumption of zinc, as well as improve the quality of the coating. To date, many researchers have tested the effect of various alloying additions to the zinc bath on the structure and thickness of the coating. The article presents the studies of coatings obtained in baths with additives of aluminum, nickel, lead, bismuth, tin, vanadium, titanium, introduced into the galvanizing bath in various configurations. It has been given data on combinations of alloying additions, which make it possible to control the reactivity of steel with different silicon contents. It has been shown that the reactivity of Sandelin steel containing 0.03–0.12 % Si can be controlled by adding Ni or a combination of Ni + Bi. In addition, Al, Bi and Sn can help control the reactivity of the steel. The effect of additives on the quality of the coating surface is shown. The addition of Pb, Bi and Sn improves the flow of liquid zinc from the surface of the product. However, one should also take into account the negative consequences of their exposure, mainly the toxicity of lead and the possibility of increasing the risk of liquid metal embrittlement when using Bi and Sn. The positive and negative consequences of the influence of some additives on the process of formation of galvanizing waste are considered. Modern developments in the field of commercial zinc alloys for galvanizing baths are also presented. Optimal solutions for choosing a bath alloying system and recommendations for the limits of changing the concentration of each element are indicated.

Ключевые слова Hot dip galvanizing, zinc coating, alloying additives, reactive steels, Sandelin effect, galvanizing bath, zinc alloy
Библиографический список

1. Maaß P., Peißker P. Handbook of hot-dip galvanization. — Weinheim, Germany. Wiley-VCH Verlag GmbH & Co. KGaA, 2011. 494 p.
2. Kania H., Liberski P. The structure and growth kinetics of zinc coatings on link chains produced of the 23MnNiCrMo5-2 steel. Solid State Phenomena. 2014. Vol. 212. pp. 145–150.
3. Suliga M., Wartacz R. The influence of the angle of working part of die on the zinc coating thickness and mechanical properties of medium carbon steel wires. Arch. Metall. Mater. 2019. Vol. 64. pp. 1295–1299.
4. Beguin P., Bosschaerts M., Dhaussy D., Pankert R., Gilles M. Galveco a solution for galvanizing reactive steel. In Proceedings of the 19th International Galvanizing Conference Intergalva 2000, EGGA, Berlin, Germany, 2000.
5. Lewis G. P., Pederson N. Optimizing the nickel-zinc process for hot dip galvanizing. In Proceedings of the 3rd Asian Pacific General Galvanizing Conference. 1996. Queensland, Australia, 1996.
6. Taylor M., Murphy S. A decade of Technigalva. In Proceedings of the 18th International Galvanizing Conference Intergalva. EGGA, Birmingham, UK. 1997.
7. Maffoni F. High aluminium alloying for general galvanizing. In Proceedings of the 15th Hot Dip Galvanizing Conference, ACSZ, Sliac, Slovakia, 2009. pp. 116–119.
8. Pankert R., Dhaussy D., Beguin P., Gilles M. Three years industrial experience with the Galveco alloy. In Proceedings of the 20th International Galvanizing Conference Intergalva 2003, EGGA, Amsterdam, The Netherlands, 2003.
9. Sun M., Packer J. A Hot-dip galvanizing of cold-formed steel hollow sections: A state-of-theart review. Front. Struct. Civ. Eng. 2019. Vol. 13. pp. 49–65.
10. Fasoyino F. A., Weinberg F. Spangle formation in galvanized sheet steel coatings. Metall. Trans. B. 1990. Vol. 21. pp. 549–558.
11. Strutzenberger J., Faderl J. Solidification and spangle formation of hot-dip-galvanized zinc coatings. Metall. Mater. Trans. A. 1998. Vol. 29. pp. 631–646.
12. Kania H., Mendala J., Kozuba J., Saternus M. Development of bath chemical composition for batch hot-dip galvanizing. Materials. 2020. Vol. 13. pp. 4168–4193.
13. Kania H., Liberski P. Synergistic influence of the addition of Al, Ni and Pb to a zinc bath upon growth kinetics and structure of coatings. Solid State Phenomena. 2014. Vol. 212. pp. 115–120.
14. Pistofidis N., Vourlias G., Konidaris S., Stergioudis G. The effect of bismuth on the structure of zinc hot-dip galvanized coatings. Mater. Lett. 2007. Vol. 61. pp. 994–997.
15. Avettand-Fènoël M.-N., Reumont G., Perrot P. The effect of tin on the reactivity of siliconcontaining steels. In Proceedings of the 21st International Galvanizing Conference Intergalva 2006, EGGA, Naples, Italy, 2006.
16. Krepski R. P. The influence of lead in after-fabrication hot dip galvanizing. In Proceedings of the 14th International Galvanizing Conference, Zinc Development Association, London, UK, 1986.
17. Foct J., Reumont G., Dupont G., Perrot P. How does silicon lead the kinetics of the galvanizing reaction to lose its solid-solid character. J. Phys. IV Colloq. 1993. Vol. 03. pp. 961–966.
18. Reumont G., Perrot P. Fundamental study of Lead additions in industrial zinc. In Proceedings of the 18th International Galvanizing Conference, EGGA, Birmingham, UK, 1997.
19. Sandelin R. W. Galvanizing Characteristics of Different Types of Steels. Wire Wire Prod. 1940. Vol. 15. pp. 655–676.
20. Liberski P., Tatarek A., Kania H., Podolski P. Coating growth on silicon-containing iron alloys in hot dip galvanizing process. In Proceedings of the 22nd International Galvanizing Conference Intergalva 2009, EGGA, Madrid, Spain, 2009. pp. 181–187.
21. Hot dip galvanized coatings on fabricated iron and steel articles. Specifications and Test Methods; ISO 1461:2009; International Organization for Standardization: Geneva, Switzerland, 2009.
22. Kania H., Saternus M., Kudlácek J. Structural aspects of decreasing the corrosion resistance of zinc coating obtained in baths with Al, Ni, and Pb additives. Materials. 2020. Vol. 13. pp. 385–396.
23. Kinstler T. J. Current Knowledge of the Cracking of Steels during Galvanization; Report 3213; GalvaScience LLC: Springville, AL, USA, 2005.
24. Golovach А. М., Dmitrieva М. О., Bondareva O. S. Influence of holding time in the melt on the morphology of zinc coating on steels with different silicon content. Vektor nauki Tolyatinskogo gosudarstvennogo universiteta. 2020. No. 2 (52). pp. 23–31.
25. Porter F. C. Zinc Handbook: Properties processing and use in design. New York: Marcel Dekker, 1991.
26. Moser Z., Zabdyr L., Gasior W., Salawa J., Zakulski W. The Pb–Zn (Lead-Zinc) System. J. Phase Equilibria. 1994. Vol. 15. pp. 643–649.
27. Kurski K. Cynkowanie Ogniowe. Warszawa, Poland: WNT, 1971.
28. Guttman M., Leprete Y., Aubry A., Roch M. J., Moreau T., Dillet P., Mataigne J. M., Baudin H. In Proceedings of the Galvatech, Chicago, IL, USA. 1995. p. 295.
29. Katiforis N., Papadimitriou G. Influence of copper, cadmium and tin additions in the galvanized bath on the structure, thickness and cracking behavior of the galvanized coatings. Surf. Coat. Technol. 1996. Vol. 78. pp. 185–195.
30. EN 1179:2003. Zinc and Zinc Alloys — Primary Zinc. European Committee for Standardization: Brussels, Belgium, 2003.
31. Gellings P. J., Gierman G., Koster D., Kuit J. Synthesis and characterization of homogeneous intermetallic Fe – Zn compounds. Part III: Phase Diagram. Z. Met. 1980. Vol. 71. pp. 70–75.
32. Harper S., Browne R. S. High-temperature galvanizing of silicon-killed steel. In Proceedings of the 12th International Galvanizing Conference Intergalva 1979, ZDA, Paris, France, 1979. pp. 175–180.
33. Leroy V., Emond C., Cosse P., Habraken L. Study of the surface of silicon-killed steels in relation to hot dip galvanizing. In Proceedings of the Seminar on Galvanizing of Silicon Containing Steels, Liege, Belgium, 1975. Durham, NC, USA: ILZRO Inc. 1975. pp. 97–113.
34. Poag G. Aluminum in Batch Galvanizing. The Next Genertion. AGA TechForum. 2010. Philadephia, PA, 2010. URL: http://www.galvanizeit.org/images/uploads/memberPDFs/Aluminum_in_Galvanizing_Graham_Poag.pdf (access date: 01.06.2022).
35. Bondareva O. S., Melnikov A. A., Makarov G. V., Chekh V. V. Hot dip galvanizing of siliconcontaining steels. Moscow: Innovatsionnoe mashinostroenie 2019. 183 p.
36. Sepper S., Peetsalu P., Kulu P., Saarna M., Mikli V. The role of silicon in the hot-dip galvanizing process. Proceedings of the Estonian Academy of Sciences. 2016. Vol. 65, Iss. 2. pp. 159–165.
37. Mooney T. Galvanizing high silicon steel. Metal Finishing. 1997. Vol. 95, Iss. 5. pp. 63.
38. Che C., Lu J., Kong G., Xu Q. Role of silicon in steels on galvanized coatings. Acta Metallurgica Sinica (English Letters). 2009. Vol. 22, Iss. 2. pp. 138–145.
39. Pelerian J., Hoffmann J., Leroy V. The influence of silicon and phosphorus on the commercial galvanization of mild steels. Metall. 1981. Vol. 35, Iss. 9. pp. 870–873.
40. Marder A. R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 2000. Vol. 45. pp. 191–271.
41. Bondareva O., Turovsky A., Turovsky Y. Application of nickel tablets in hot-dip galvanizing for silicon and phosphorus steel reactivity control. Mater. Sci. Forum. 2020. Vol. 992. pp. 689–694.
42. Bondareva O. S., Melnikov A. A. Analysis of the mechanism of Ni – Zn – Fe-dross formation on the surface of products during hot-dip galvanizing of silicon-containing steels. Nauka. Tekhnologii. Proizvodstvo. 2015. No. 1 (5). pp. 47–50.
43. Tang N. Y. Alternative description of dross formation when galvanizing steels in zinc-nickel baths. J. Phase Equilibria. 1995. Vol. 16. pp. 110–112.
44. Raghavan V. Fe – Ni – Zn (Iron–Nickel–Zinc). J. Phase Equilibria. 2003. Vol. 24. pp. 558–560.
45. Tang N.-Y., Adams G. R., Kolisnyk P. S. On determining effective Al in continuous galvanizing baths. In Proceedings of the Galvatech Conference 1995, Chicago, IL, USA, 1995; Iron and Steel Society: Chicago, IL, USA. 1995. p. 777.
46. Nakano J., Malakhov D. V., Yamaguchi S., Purdy G. R. A full thermodynamic optimization of the Zn – Fe – Al system within the 420–500 °C temperature range. Computer Coupling of Phase Diagrams and Thermochemistry. 2007. Vol. 31. P. 125–140.
47. Urednicck M., Kirkaldy J. S. An investigation of the phase constitution of iron – zinc – aluminium at 450 °C. Z. Für Met. 1973. Vol. 64. P. 419–427.
48. Guana Ch., Li J., Tan N., Zhang Sh.-G., Zhang W.-Y. Effect of bath aluminum concentration on the galvanizing of hydrogen reduced hot rolled steel without acid pickling. Surface & Coatings Technology. 2015. Vol. 279. pp. 142–149.
49. Gutman H., Niessen P. Galvanizing of silicon steels in aluminum containing baths. In Proceedings of the Seminar on Galvanizing Silicon Containing Steels 1975, Liege, Belgium, 1975; ILZRO: Durham, NC, USA, 1975. pp. 198–216.
50. Huebner U., Nilmen F. Galvanizing of Si-containing steel. In Proceedings of the 12th Int. Galvanizing Conference Intergalva 1979, Paris, France, 1979; ZDA: London, UK, 1979. p. 156.
51. N. Dreulle. Zinc alloy for galvanization processes. Pat. No. 4168972 U.S. 1979.
52. Memmi C., Bottanelli U., Cecchini M. Surflux: A new technology for batch hot dip galvanizing with a low-Al zinc alloy. In Proceedings of the 22th International Galvanizing Conference Intergalva 2009, EGGA, Madrid, Spain, 2009.
53. Bondareva O. S., Melnikov A. A. Investigation of the mechanism of influence of aluminum and nickel microadditives in zinc melt on the structure of zinc coating phases on silicon-containing steels. Izvestiya Samarskogo nauchnogo tsentra RAN. 2013. Vol. 15. No. 6 (3). pp. 607–611.
54. Sebisty J. J., Palmer R. H. Hot dip galvanizing with less common bath additions. In Proceedings of the 7th International Conference on Hot Dip Galvanizing, Paris, France, 1964; ILZRO: Durham, NC, USA, 1964. pp. 235–265.
55. Reumont G., Foct J., Perrot P. New possibilities for the galvanizing process: The addition of manganese and titanium to the zinc bath. In Proceedings of the 19th International Galvanizing Conference Intergalva 2000, EGGA, Berlin, Germany. 2000.
56. Gloriant T., Reumont G., Perrot P. The Fe – Zn – Ti system at 450 °C. Z. Für Met. 1997. Vol. 88. pp. 539–544.
57. Adams G., Zervoudis J. A new alloy for galvanizing reactive steels. In Proceedings of the 18th International Galvanizing Conference Intergalva 1997, EGGA, Birmingham, UK, 1997.
58. Su X., Wu C., Liu D., Yin F., Zhu Z., Yang S. Effect of vanadium on galvanizing Si-containing steels. Surface & Coatings Technology. 2010. Vol. 205. pp. 213–218.
59. Sebisty J. J., Edwards J. O. Influence of aluminium, lead and iron on the structure and properties of galvanized coatings. In Proceedings of the 5th International Conference on Hot Dip Galvanizing, Brussels Belgium, June 1958; ZDA: London, UK, 1958. pp. 213–240.
60. Fratesi R., Ruffini N., Malavolta M., Bellezze T. Contemporary use of Ni and Bi in hot-dip galvanizing. Surface and Coatings Technology. 2002. Vol. 182. 157 (1). pp. 34–39.
61. Gilles M., Sokolowski R. The zinc-tin galvanizing alloy: a unique zinc alloy for galvanizing any reactive steel grade. In Proceedings of the 18th International Galvanizing Conference Intergalva 1997, EGGA, Birmingham, UK, June 1997.
62. Gagne M. Hot-dip galvanizing with zinc-bismuth alloys. Metall. 1999. Vol. 53. pp. 269–271.
63. Mendala J. Liquid metal embrittlement of steel with galvanized coatings. Mater. Sci. Eng. 2012. Vol. 35. pp. 012002.
64. Mendala J. The possibility of the LME phenomenon in elements subjected to metallization in Zn bath with Bi addition. Solid State Phenomena. 2015. Vol. 226. pp. 167–172.
65. Mendala J., Liberski P. Liquid metal embrittlement of steel with a coating obtained by batch hot dip method in a Zn + 2 % Sn bath. Solid State Phenomena. 2014. Vol. 212. pp. 107–110.
66. Huckshold M. Improving design guidance to avoid cracking of galvanized structural steelwork. In Proceedings of the 22th International Galvanizing Conference, Session: Steel and Galvanizing, EGGA, Madrid, Spain, 2009.
67. Shibli S. M. A., Chacko F., Divya C. Al2O3–ZrO2 mixed oxide composite incorporated aluminium rich zinc coatings for high wear resistance. Corrosion Science. 2010. Vol. 52. Iss. 2. pp. 518–525.
68. Shibli S. M. A., Chacko F. Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance. Applied Surface Science. 2011. Vol. 257, Iss. 7. pp. 3111–3117.
69. Shibli S. M. A., Chacko F. CeO2–TiO2 mixed oxide incorporated high performance hot dip zinc coating. Surface and Coatings Technology. 2011. Vol. 205, Iss. 8-9. pp. 2931–2937.
70. Dreulle N., Dreulle P., Vacher J. C. Das Problem der Feuerverzinkung von siliziumhaltigen Stahlen. Metall. 1980. Vol. 34. pp. 834–838.
71. Zervoudis J., Andreson G. A reviev of bath alloy additives and their impact on the quality of the galvanized coating. In Proceedings of the 6th Asia Pacific General Galvanizing Conference, Cairns, Australia, 2005.

Language of full-text русский
Полный текст статьи Получить
Назад