Журналы →  Gornyi Zhurnal →  2022 →  №7 →  Назад

PHYSICS OF ROCKS AND PROCESSES
Название New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits
DOI 10.17580/gzh.2022.07.04
Автор Tsoy B. V., Myrzakhmetov S. S., Bekbotaeva A. A., Yusupov Kh. A.
Информация об авторе

Satbayev University, Almaty, Kazakhstan:
B. V. Tsoy, Doctoral Student, bertan.tsoy@mail.ru
S. S. Myrzakhmetov, Senior Lecturer, Candidate of Engineering Sciences
A. A. Bekbotaeva, Associate Professor, Doctor of Engineering Sciences
Kh. A. Yusupov, Professor, Doctor of Engineering Sciences

Реферат

In-situ uranium recovery features high economic efficiency and low environmental impact as compared with other uranium production techniques. The article presents the experimental results on the application of new geophysical logging methods at a uranium deposit of hydrogenetic type. Complex hydrogenetic uranium deposits have a nonuniform lithology, varied permeability and alternation of permeable and water-resistant rocks. The development of such deposits is often complicated by a number of factors affecting the production process. The common methods of geophysical research in wells provide insufficiently reliable information about the geological structure of interwell space. As a result, it is difficult to control and monitor the production process, which can lead to inefficient consumption of chemical reagents, undesirable leakage beyond the limits of production blocks, incomplete extraction of uranium reserves, etc. To solve the problem of insufficient studies of interwell space, the method of radiowave geointroscopy was tested. This method is based on the measurement of electrical resistance. The tests were carried out in two stages, during the periods of high-rate production. By comparing the measurement results in different dimensions, the electrical resistance maps were plotted. The interpretation of the measurement results made it possible to obtain reliable data on the actual distribution of solutions in the interwell space in a given period of time, to identify areas of excessive concentrations of solutions (stagnant zones), to assess acidification dynamics in production blocks, and to delineate potentially difficult areas of the blocks.

Ключевые слова Geophysical logging, lithological structure, radio-frequency survey, in-situ recovery, stagnant zones, interwell space, uranium production
Библиографический список

1. Yussupov K., Aben E., Omirgali A., Rakhmanberdiyev A. Analyzing a denitration process in the context of underground well uranium leaching. Mining of Mineral Deposits. 2021. Vol. 15, No. 1. pp. 127–133.
2. Ruiz O., Thomson B., Cerrato J. M., Rodriguez-Freire L. Groundwater restoration following in-situ recovery (ISR) mining of uranium. Applied Geochemistry. 2019. Vol. 109. 104418. DOI: 10.1016/j.apgeochem.2019.104418
3. Hiam-Galvez D., Gerber E., Perkrul J. In situ recovery (ISR)—The permitting challenge. ALTA 2020: Uranium Ore Processing. Perth : ALTA Metallurgical Services, 2020.
4. Temirkhanova R. G., Syzdykova M. T. The role and place of geophysical logging in uranium prospecting, exploration and production in Kazakhstan. Geologiya i okhrana nedr. 2013. No. 4(49). pp. 62–66.
5. Penney R., Ames C., Quinn D., Ross A. Determining uranium concentration in boreholes using wireline logging techniques: comparison of gamma logging with prompt fission neutron technology (PFN). Applied Earth Science. 2012. Vol. 121, Iss. 2. pp. 89–95.
6. Verkhoturov A. G., Sabigatulin A. А. Stimulation of uranium recovery by treatment of seepage zones of wells. GIAB. 2019. No. 7. pp. 13–20.
7. Solodov I. N., Polonyankina S. V., Vorobeva L. Yu., Noskov M. D., Ivanov A. G. Elimination of uranium losses and dilution during borehole underground leaching. Razvedka i okhrana nedr. 2018. No. 7. pp. 52–58.
8. Legavko D. A. Improvement of methodical receptions for log data interpretation at exploration and development of infiltration uranium mine fields. Geofizicheskie issledovaniya. 2019. Vol. 20, No. 2. pp. 28–38.
9. Seredkin M., Zabolotsky A., Jeffress G. In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics. Ore Geology Reviews. 2016. Vol. 79. pp. 500–514.
10. Istratov V. A., Lysov M. G., Chibrikin I. V., Matyashov S. V., Shumilov A. V. Radiowave geointroscopy in the interwell space in oil reservoir. Geofizika. 2000. Special issue. Permneftegeofizika is 50. pp. 90–93.
11. Kyser K. Exploration for uranium. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel. Woodhead Publishing Series in Energy No. 93. Amsterdam : Elsevier, 2016. pp. 53–76.
12. Abzalov M. Z., Drobov S. R., Gorbatenko O., Vershkov A. F., Bertoli O. et al. Resource estimation of in situ leach uranium projects. Transactions of the Institutions of Mining and Metallurgy: Section B: Applied Earth Science. 2014. Vol. 123, Iss. 2. pp. 71–85.
13. Chernyavsky A. G. On the classification for solid mineral reserves. Mineralnye resursy Rossii. Ekonomika i upravlenie. 2010. No. 5. pp. 35–40.
14. Yusupov Kh. A., Aleshin A. P., Bashilova E. S., Tsoi B. V. Application of hydrogen peroxide to intensify in-situ leaching of uranium. Obogashchenie Rud. 2021. No. 2. pp. 21–26. DOI: 10.17580/or.2021.02.04
15. Yusupov Kh. A., Aliev S. B., Dzhakupov D. A., Elzhanov E. A. Application of ammonium bifluoride for chemical treatment of wells in underground uranium leaching. Gornyi Zhurnal. 2017. No. 4. pp. 57–60. DOI: 10.17580/gzh.2017.04.11
16. Karimov I. A., Khakimov K. Zh. Development of the compound structure of uranium mineralization of underground leaching. GIAB. 2015. No. 9. pp. 67–69.
17. Yazikov V. G., Legavko A. V. Specifics of geophysical logging in studying and mining of infiltration (hydrogenetic type) uranium. To msk : Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2012. 95 p.
18. Solodov I. N., Kamnev E. N. (Eds.). Uranium Geotechnology (Russian Experience). Moscow : KDU, 2017. 576 p.
19. Istratov V. A., Kolbenkov A. V., Perekalin S. O., Skrinnik A. V. Radiowave monitoring of downhole leaching in uranium fields. Geofizika. 2010. No. 4. pp. 59–68.
20. Lagneau V., Regnault O., Descostes M. Industrial Deployment of Reactive Transport Simulation: An Application to Uranium In Situ Recovery. Reviews in Mineralogy and Geochemistry. 2019. Vol. 85, Iss. 1. pp. 499–528.
21. Cherepanov A. O. Spatial geoelectric monitoring of the permafrost state near injection wells by the example of an oil field in Western Siberia. Inzhenernye izyskaniya. 2014. No. 12. pp. 18–24.
22. Kononov A. V., Goncharenko S. N., Assanov D. A., Maslennikov O. O. Research studying of ultrasonic effects on ion-exchange processes in uranium production by the in-situ leaching method. Tsvetnye Metally. 2020. No. 4. pp. 50–57. DOI: 10.17580/tsm.2020.04.06
23. Dzhakupov D. A. The choice of layout of production wells in the development of stacked ore deposits. Advanced Scientific Research : Topical Issues, Achievements and Innovation. V International Conference Proceedings. Penza : MTsNS Nauka i Prosveshchenie, 2018. pp. 210–212.
24. Ivanov A. G., Solodov I. N. Selection of casing material for in-situ leach wells. Gornyi Zhurnal. 2018. No. 7. pp. 81–85. DOI: 10.17580/gzh.2018.07.16
25. Sushko S. M., Begun A. D., Povelitsin V. M., Asanov N. S. New method of hole clearance waterproofing method in in-situ leaching in a productive reservoir. Geologiya i okhrana nedr. 2013. No. 3(48). pp. 65–70.
26. Kuznetsov N. M. 3D processing method of crosshole radiowave investigation. Vestnik KRAUNTs. Nauki o Zemle. 2012. No. 1(19). pp. 240–246.
27. Khaykovich I. M., Kurilenko V. V. Geophysical assurance of geological problems and environment in exploration and exploitation of uranium deposits. Razvedka i okhrana nedr. 2014. No. 11. pp. 27–32.
28. Bankov S. E., Kaloshin V. A., Frolova E. V. SynTheses and Analysis of a Frequency-Scanned Planar Waveguide Array Focused in the Fresnel Zone. Journal of Communications Technology and Electronics. 2016. Vol. 61, No. 6. pp. 587–597.
29. Goncharenko S. N., Berdaliev B. A. Methods to predict and estimate residual and technological concentrations of uranium ore in in-situ leaching mining. GIAB. 2018. No. 5. pp. 43–48.

Language of full-text русский
Полный текст статьи Получить
Назад