Журналы →  Obogashchenie Rud →  2022 →  №3 →  Назад

TECHNOLOGICAL MINERALOGY
Название Mineralogical and processing features of Khibiny apatitenepheline ores
DOI 10.17580/or.2022.03.04
Автор Neradovsky Yu. N., Kompanchenko A. A., Chernyavsky A. V.
Информация об авторе

Geological Institute of the Federal Research Center «Kola Science Center» of the RAS (Apatity, Russia):

Neradovsky Yu. N., Leading Researcher, Candidate of Geological and Mineralogical Sciences, nerad@geoksc.apatity.ru
Kompanchenko A. A., Researcher, Candidate of Geological and Mineralogical Sciences
Chernyavsky A. V., Junior Researcher

Реферат

This article discusses various process intensification factors for the processing of Khibiny apatite-nepheline ores . It includes an overview of the available intensification solutions for the stages of crushing, grinding, and flotation. According to the authors, finer crushing is advisable. With the ore strength varying between 22 and 160 MPa, finer crushing would allow the plant feed to be sorted by physical properties and apatite grades. At the grinding stage, apatite liberation should be monitored with due account of its genetic feature: it is present in the ore in two forms, as free coarse-grained particles and as bound fine-crystalline particles in poikiloblasts in rock-forming minerals. The strength values are 32 MPa for the free apatite and 180–190 MPa for the poikiloblasts; therefore, apatite liberation is a two-stage process. Apatite flotation is negatively affected by higher concentrations of Sr and REE, which replace CaO in the apatite structure and contribute to the formation of Na on the surface of the crystal lattice. Changes in the lattice cell structure may inhibit apatite flotation. The total concentration of SrO + REE2O3 varies in the Khibiny Mountains apatite between 1 and 57 wt%. A change in the apatite properties possibly occurs at Σ (5.36SrO + 2.05REЕ2O3) = 7.41 wt% with Na2O at approximately 0.5 wt%.
The authors would like to thank S. A. Bogdanov, Chief Mineral Engineer at NWPC JSC, and A. S. Maslyakov, Mineralogist at the Quality Control Department of NWPC JSC, for their most valuable comments.
The work has been completed in the framework of Research Topic No. 0226-2019-0053 of the Geological Institute of the Kola Science Center of the Russian Academy of Sciences.

Ключевые слова Process intensification, apatite-nepheline ores, crushing, grinding, flotation, mineral composition, physical properties
Библиографический список

1. Gur'ev A. A. Sustainable development of crude ore resources and benefication facilities of JSC «Apatit» based on best engineering solutions. Zapiski Gornogo Instituta. 2017. Vol. 228. pp. 662–673.
2. Chmykhalova S. V. Effect of ore quality loss and variability on long-life operating data and ecological index of a mining company (in terms of Apatit). Gorny Informatsionnoanaliticheskiy Byulleten'. 2018. No. 2. pp. 73–80.
3. Golovanov G. A. Flotation of Kola apatite-containing ores. Moscow: Khimiya, 1976. 216 с.
4. Bobryshev G. I. Geological and technological bases of effective exploitation of apatite-nepheline ores of the Khibiny deposits: abstract of the diss. for the degree of Candidate of Geological and Mineralogical Sciences. 1982. 23 p.
5. Maslov A. D., Melnikov N. N., Kalashnik A. I., Selin A. A., Lebedev A. V., Sukhoruchenkov A. I. Ways of stabilization and development of the mining complex of the Murmansk region. Gornyi Zhurnal. 1998. No. 4. pp. 6–10.
6. Kalugin A. I. Research and substantiation of optimal conditions for selective flotation of apatite from apatite-nepheline ores: diss. for the degree of Candidate of Engineering Sciences. 2002. 150 p.
7. Mitrofanova G. V. Improving the efficiency of flotation of apatite-containing ores based on the use of alkyl dicarboxylic acids and their mono-derivatives: diss. for the degree of Candidate of Engineering Sciences. 2003. 157 p.
8. Brylyakov Yu. E. Development of theory and practice of complex beneficiation of apatite-nepheline ores of Khibiny deposits: diss. for the degree of Doctor of Engineering Sciences. 2004. 358 p.
9. Mukhina T. N. Improving the efficiency of nepheline reverse flotation using high molecular weight alkylbenzenesulfonates: diss. for the degree of Candidate of Engineering Sciences. 2004. 174 p.
10. Nikolaev A. I. Prospects for the development of chemical production on the basis of the Kola Peninsula: the example of JSC «Apatit». Sever Promyshlennyi. 2006. No. 5. URL: https://helion-ltd.ru/chemical-ind-in-kola/.
11. Neradovsky Yu. N., Kompanchenko A. A., Chernyavsky A. V. Texture and mineral composition of magmatic apatitenepheline ores: technological consequences (exemplified by Khibiny). IOP Conference Series: Earth and Environmental Science. 2022. Vol. 988, Chap. 2. 6 p. DOI: 10.1088/1755-1315/988/3/032031.
12. New Khibiny apatite deposits. Ed. E. A. Kamenev, D. A. Mineev. Moscow: Nedra, 1982. 182 p.
13. Tereshchenko S. V., Marchevskaya V. V., Chernousenko E. V., Rukhlenko E. D., Pavlishina D. N., Smolnyakov A. A. Complex ore pretreatment in technology of low grade apatite-nepheline ore concentration. Gorny Informatsionno-analiticheskiy Byulleten'. 2015. No. 1. pp. 35–41.
14. Tereshchenko S. V., Pavlishina D. N. X-ray luminescence separation of low-grade apatite ores. Gorny Informatsionno-analiticheskiy Byulleten'. 2017. No. 11. pp. 130–137.
15. Alekseeva S. A., Tereshchenko S. V. Study of impact of preliminary concentration on grindability of apatitecontaining ores. Vestnik Kolskogo Nauchnogo Tsentra RAN. 2018. No. 4. pp. 61–68.
16. Rakaev A. I., Chepkalenko N. A. Intensification of the ore preparation cycle during complex beneficiation of apatite-nepheline ores. Innovative potential of the Kola science. Apatity: Kola RC RAS, 2005. pp. 106–111.
17. Elbendari A. M. Increasing the complexity of phosphate ore processing by flotation method: diss. for the degree of Candidate of Engineering Sciences. St. Petersburg, 2021. 134 p.

18. Elbendary A. M., Aleksandrova T. N., Nikolaeva N. V. Influence of operating parameters on the flotation of the Khibiny apatite-nepheline deposits. Journal of Materials Research and Technology. 2019. Vol. 8, No. 6. pp. 5080–5090.
19. Nikolaeva N. V., Aleksandrova T. N., Elbendari A. M. Ore strength property evaluation in the design of ore preparation cycles. Geomechanics and geodynamics of rock masses. St. Petersburg, London (UK): Taylor & Francis Group, 2018. pp. 333–338.
20. Kalugin A. I., Gumenichenko K. M., Barabash A. Yu., Arsentiev S. S. Experience of fine screening introduction in apatite-nepheline ore milling circuit. Gornyi Zhurnal. 2014. No. 10. pp. 52–57.
21. Ivanova V. A., Mitrofanova G. V. Features of apatite flotation from stored waste of apatite-nepheline ore beneficiation. Gorny Informatsionno-analiticheskiy Byulleten'. 2012. No. 1. pp. 135–141.
22. Mitrofanova G. V., Ivanova V. A., Artemiev A. V. Use of reagents-flocculants in water-preparation processes during phosphorous-containing ore processing. 17th International multidisciplinary scientific geoconference SGEM 2017. 2017. Vol. 17, No. 11. pp. 1143–1150.
23. Azizi A., Seyyed A. G. S. M. Relative floatability as a criterion for evaluating the separation performance of phosphate from iron. International Journal of Mining Science and Technology. 2017. Vol. 27, No. 3. pp. 451–458.
24. Chakmouradian A. R., Reguir E. P., Zaitsev A. N., Couёslan C., Xu C., Kynicky J., Mumin A. N., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos. 2017. Vol. 274. pp. 188–213.
25. Dorjpalma E., Jieun S., Seon-Gyu C., Young J. L., Enkhbayar B. Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia. International Journal of Geosciences. 2016. Vol. 7. pp. 20–31.
26. Neradovsky Yu. N., Kompanchenko A. A., Bazay A. V., Baybikova Yu. B. Study of the structural and chemical features of fluorapatite of the Khibiny massif as a potential raw material for processing. Obogashchenie Rud. 2020. No. 4. pp. 14–20. DOI: 10.17580/or.2020.04.03.
27. Sha M. C., Li Z., Bradt R. C. Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. Journal of Applied Physics. 1994. Vol. 75. pp. 7784–7787.
28. Yuanming P., Michael E. F. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry. 2002. Vol. 48, No. 1. pp. 13–49.
29. O’Donnell M. D., Fredholm Y., de Rouffignac A., Hill R. G. Structural analysis of a series of strontiumsubstituted apatites. Acta Biomaterialia. 2008. Vol. 4. pp. 1455–1464.
30. Denisov A. P., Dudkin O. B., Ilyina N. A., Kravchenko-Berezhnoy R. A., Polezhaeva L. I. On the dependence of the physical properties of apatite on the admixture of rare earths and strontium. Geokhimiya. 1961. No. 8. pp. 666–676.
31. Kameneva E. E. Flotation mineralogy of apatite. Fundamentals of minerallurgy. Theory and practice of mineral separation. Moscow: Nauka, 1983. pp. 245–249.
32. Kostyleva-Labuntsova E. E., Borutsky B. E., Sokolova M. N., Shlyukova Z. V., Dorfman M. D., Dudkin O. B., Kozyreva L. V. Mineralogy of the Khibiny massif (minerals). Vol. 2. Moscow: Nauka, 1978. 586 p.

Language of full-text русский
Полный текст статьи Получить
Назад