Журналы →  Tsvetnye Metally →  2020 →  №4 →  Назад

Название Electrical conductivity and hardness of Al – 1.5 % Mn and Al – 1.5 % Mn – 1.5 % Cu (wt.%) cold-rolled sheets: comparative analysis
DOI 10.17580/tsm.2020.04.08
Автор Belov N. A., Korotkova N. O., Cherkasov S. O., Aksenov A. A.
Информация об авторе

National University of Science and Technology MISiS, Moscow, Russia:

N. A. Belov, Professor, Principal Researcher at the Department of Metal Forming, Doctor of Technical Sciences
N. O. Korotkova, Engineer at the Department of Metal Forming, Candidate of Technical Sciences, e-mail: kruglova.natalie@gmail.com
S. O. Cherkasov, Master’s Student at the Department of Metal Forming
A. A. Aksenov, Professor at the Department of Metal Forming1, Doctor of Technical Sciences


Through calculations and experiments, the authors of this paper conducted a comparative analysis of two alloys: Al – 1.5% Mn and Al – 1.5% Mn – 1.5% Cu — by comparing their physico-mechanical properties in different states during thermomechanical treatment. Thus, specific conductivity and hardness were determined for castings and rolled sheets reduced at ε = 80% both as cast or rolled and following multi-stage annealing in the temperature range of 200–600 oC. Addition of copper was found to contribute to the conductivity and hardness of both cast and deformed specimens after annealing due to Al20Cu2Mn3 dispersoids formed in the structure. The size of the latter is ~100 nm. Two specimens in an as-deformed state were found to have a higher specific conductivity attributable to an accelerated breakdown of the (Al) solid solution amid high dislocation density due to high deformation rates. The authors carried out a quantitative analysis of the phase composition of the Al – 1.5% Mn and Al – 1.5% Mn – 1.5% Cu alloys in the temperature range of 200–600 oC. For deformed Al – Cu – Mn semi-products, the authors came up with a function enabling to calculate specific conductivity on the basis of phase composition parameters.
This research was funded under the Assignment No. 11.2072.2017/4.6 for the implementation of the following project: Developing a process to obtain deformed semi-products made of aluminium-matrix eutectic composites hardened with L12 phase nanoparticles without quenching.

Ключевые слова Wrought aluminium alloys, Al – Cu – Mn system, specific conductivity, thermomechanical treatment, non-equilibrium crystallization, Al20Cu2Mn3 phase
Библиографический список

1. Hatch J. E. Aluminum: Properties and Physical Metallurgy. ASM Metals. Park, Ohio, 1984. 424 p.
2. Mondolfo L. F. Aluminum Alloys: Structure and Properties. Translated from English. Moscow : Metallurgiya, 1979. 640 p.
3. Vorontsova L. A. Aluminium and aluminium alloys in electrical devices. Moscow : Energiya, 1971. 224 p.

4. Rios P. R., Fonseca G. S. Grain boundary pinning by Al6Mn precipitates in an Al – 1wt % Mn alloy. Scripta Materialia. 2004. Vol. 50, Iss. 1. pp. 71–75. DOI: 10.1016/j.scriptamat.2003.09.031.
5. Robson J. D., Hill T., Kamp N. The effect of hot deformation on dispersoid evolution in a model 3xxx alloy. Materials Science Forum. 2014. Vol. 794–796. pp. 697–703. DOI: 10.4028/www.scientific.net/MSF.794-796.697.
6. Chen S. P., Kuijpers N. C. W., van der Zwaag S. Effect of microsegregation and dislocations on the nucleation kinetics of precipitation in aluminium alloy AA3003. Materials Science and Engineering A. 2003. Vol. 341, Iss. 1-2. pp. 296–306. DOI: 10.1016/S0921-5093(02)00245-9.
7. Belov N. A., Eskin D. G., Aksenov A. A. Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. Elsevier, 2005. 414 p.
8. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. The Aluminum Association Publications. Arlington, 2015.
9. ASTM B941–16, Standard Specification for Heat Resistant Aluminum-Zirconium Alloy Wire for Electrical Purposes. ASTM International. West Conshohocken, PA. 2016.
10. Li Zh., Zhang Zh., Chen X.-Grant. Improvement in the mechanical properties and creep resistance of Al – Mn – Mg 3004 alloy with Sc and Zr addition. Materials Science and Engineering A. 2018. Vol. 729. pp. 196–207. DOI: 10.1016/j.msea.2018.05.055.
11. Lefebvre W., Danoix F., Hallem H., Forbord B., Bostel A., Marthinsen K. Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium. Journal of Alloys and Compounds. 2009. Vol. 470, Iss. 1-2. pp. 107–110. DOI: 10.1016/j.jallcom.2008.02.043.
12. Belov N. A., Alabin A. N., Eskin D. G., Istomin-Kastrovskiy V. V. Optimization of Hardening of Al – Zr – Sc Casting Alloys. Journal of Materials Science. 2006. Vol. 41, Iss. 18. pp. 5890–5899. DOI: 10.1007/s10853-006-0265-7.
13. Belov N. A., Alabin A. N., Yakovlev A. A. Influence of copper on formation of cast microstructure of aluminium alloys, containing 1% (wt.) of Mn. Tsvetnye Metally. 2014. No. 7. pp. 66–72.
14. Belov N. A., Alabin A. N., Matveeva I. A. Optimization of phase composition of Al – Cu – Mn – Zr – Sc alloys for rolled products without requirement for solution treatment and quenching. Journal of Alloys and Compounds. 2014. Vol. 583. pp. 206–213. DOI: 10.1016/j.jallcom.2013.08.202.
15. Tiryakioglu M., Shuey R. T. Quench sensitivity of 2219-T87 aluminum alloy plate. Materials Science and Engineering A. 2010. Vol. 527, Iss. 18-19. pp. 5033–5037. DOI: 10.1016/j.msea.2010.04.060.
16. Mansurov Yu. N., Belov N. A., Sannikov A. V., Buravlev I. Yu. Optimization of composition and properties of heat-resistant complex-alloyed aluminum alloy castings. Non-ferrous Мetals. 2015. Vol. 39, Iss. 2. pp. 48–55. DOI: 10.17580/nfm.2015.02.09.
17. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
18. GOST 859–2014. Copper. Grades (incl. Revision 1). Introduced: 01.07.2015.
19. GOST 53777–2010. Master alloys of aluminium. Specifications (incl. Revision 1). Introduced: 01.07.2010.
20. Zhang Ya., LI F., Luo Zh., Zhao Yu., Xia W., Zhang W. et al. Effect of applied pressure and ultrasonic vibration on microstructure and microhardness of Al – 5,0 Cu alloy. Transactions of Nonferrous Metals Society of China. 2016. Vol. 26, Iss. 9. pp. 2296–2303. DOI: 10.1016/S1003-6326(16)64348-0.
21. Zh. Chen, Pei Ch., Ma C. Microstructures and mechanical properties of Al – Cu – Mn alloy with La and Sm addition. Rare Metals. 2012. Vol. 31, Iss. 4. pp. 332–335. DOI: 10.1007/s12598-012-0515-6.
22. Ringer S. P., Hono K. Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies. Materials Characterization. 2000. Vol. 44, Iss. 1-2. pp. 101–131. DOI: 10.1016/S1044-5803(99)00051-0.
23. Feng Z. Q., Yang Y. Q., Huang B., Li M. H., Chen Y. X. et al. Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. Journal of Alloys and Compounds. 2014. No. 583. pp. 445–451. DOI: 10.1016/j.jallcom.2013.08.200.
24. Chen Z., Chen P. P., Li S. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al – Cu – Mn casting alloy. Materials Science and Engineering A. 2012. Vol. 532. pp. 606–609. DOI: 10.1016/j.msea.2011.11.025.
25. Valiev R. Z., Murashkin M. Yu., Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Materialia. 2014. No. 76. pp. 13–16. DOI: 10.1016/j.scriptamat.2013.12.002.

Language of full-text русский
Полный текст статьи Получить