Журналы →  Obogashchenie Rud →  2017 →  №5 →  Назад

TECHNOLOGICAL MINERALOGY
Название Exploring a possibility to determine titanium magnetite ores mineral composition by spectroscopy data
DOI 10.17580/or.2017.05.05
Автор Lyutoev V. P., Makeev A. B., Lysyuk A. Yu.
Информация об авторе

Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences (Syktyvkar, Russia):

Lyutoev V. P., Leading Researcher, Candidate of Geological and Mineralogical Sciences, vlutoev@geo.komisc.ru
Lysyuk A. Yu., Junior Researcher

 

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (Moscow, Russia):

Makeev A. B., Leading Researcher, Doctor of Geological and Mineralogical Sciences, Professor, abmakeev@igem.ru

Реферат

By means of the mossbauer spectroscopy method, the objective data on iron-containing mineral phases ratio in five comparison objects from the titanium-magnetite-ilmenite deposits of the Eastern Siberia and China (the Chineisky, Angashsnsky, Slyudinsky, Panzhihua massifs), as well as from the Bystrinskoye deposit, were obtained. Ratios of ilmenite, as main titanium economic mineral in deposits of magmatic genesis, with respect to titanium-magnetite, magnetite and barren mass of silicate minerals were determined. The three process-mineralogical types of titanium-magnetite ores were revealed: non-ilmenite, low-ilmenite and high-ilmenite. Absence of noticeable quantities of ilmenite was ascertained in the Bystrinskoye deposit ores, where the ore mineral is represented only by titanium-magnetite. Low content of ilmenite in the Chineisky massif ore constituent demands application of the state-of-the-art technologies. The ores of the Kruchininsky and Slyudinsky deposits with ilmenite content over 50 % in ore constituent comply with the industrial requirements and are suitable for standard processing. Increased content of magnetic pyrrhotine in the Kruchininsky deposit ores does not degrade the titanium ores, demanding only additional operations of magnetic separation and flotation.
The authors are indebted to B. I. Gongalsky for the specimens provided for the investigations.
The work was performed with the financial aid for the Project of the Ural branch of the Russian Academy of Sciences Project No. 15-11-5-33 «Development of innovation technologies for the purpose of efficient and all-round utilization of mineral raw materials and production of new mineral-based materials».

Ключевые слова Mineral composition, iron-containing minerals, ilmenite, titanium-magnetite, mossbauer spectroscopy, infra-red spectroscopy, East-Siberian deposits, Panzhihua massif (China)
Библиографический список

1. Gongalskiy B. I. Deposits of a unique metallogenic province of the Northern Transbaikalia. Moscow: VIMS, 2015. 248 p.
2. Konnikov E. G., Tsygankov A. A., Vrublevskaya T. T. Baikal-Muya volcano-plutonic belt: structural-material complexes and geodynamics. Moscow: GEOS, 1999. 163 p.
3. Kovalenker V. A., Abramov S. S., Kiseleva G. D., Krylova T. L. The large Bystrinskoe Cu–Au–Fe deposit (Eastern Trans-Baikal Region): Russia’s first example of a skarn–porphyry ore-forming system related to adakite. Doklady Earth Sciences. 2016. Vol. 468, No. 2. pp. 566–570.
4. Abramov B. N. Distribution of rare-earth elements in rocks and ores of the Kruchininskoe apatite-titanomagnetite deposit (Eastern Transbaikalia). Doklady Earth Sciences. 2013. Vol. 449, No. 1. pp. 332–336.
5. Bai Zhong-Jie, Zhong Hong, Li Chusi, Zhu Wei-Guang, He De-Feng, Qi Liang. Сontrasting parental magma compositions for the Hongge and Panzhihua magmatiс Fe-Ti-V oxide deposits, Emeishan large igneous province, SW China. Economic Geology. 2016. Vol. 109. pp. 1763–1785.
6. Chukanov N. V. Infrared spectra of mineral species. Dordrecht: Springer, 2014. 1726 p.
7. Makreski P., Jovanovski G., Gajovi A., Biljan T., Angelovski D., Jaimovi R. Minerals from Macedonia. XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoides. Journal of Molecular Structure. 2006. Vol. 788. pp. 102–114.
8. Hernandez-Mareno M. J., Ulibarri M. A., Serna R., Serna C. IR characteristic of hydrotalcite-like compounds. Phys. Chem. Minerals. 1985. Vol. 12. pp. 34–38.
9. Tarantino S. C., Boffa Ballaran T., Carpenter M. A., Domenghetti M. C., Tazzoli V. Mixing properties of the enstatite–ferrosilite solid solution: II. A Microscopic perspective. Eur. J. Mineral. 2002. Vol. 14, No. 3. pp. 537–547.
10. Lutoev V. P., Potapov S. S., Isaenko S. I., Lysyuk A. Yu., Simakova Yu. S., Samotolkova M. F. Mineral substance of the meteorite Chelyabinsk: infrared absorption, Raman and 57Fe Mössbauer spectroscopy. Vestnik IG Komi SC UB RAS. 2013. No. 7. pp. 2–9.
11. Gunnlaugsson H. P., Rasmussen H., Kristjánsson L., Steinthorsson S., Helgason Ö., Nørnberg P., Madsen M. B., Mørup S. Mössbauer spectroscopy of magnetic minerals in basalt on Earth and Mars. Hyperfine Interaction. 2008. Vol. 182. pp. 87–101.
12. Zalutskii A. A., Zalutskaya A. A., Sed’mov N. A., Kuz’min R. N. The Mössbauer analysis of iron oxyhydroxides in soils of Earth and Mars. Lithology and Mineral Resources. 2015. Vol. 50, No. 4. pp. 270–298.
13. Dyar M. D., Agresti D., Schaefer M. W., Grant C. A., Sklute E. C. Mössbauer spectroscopy of Earth and planetary materials. Ann. Rev. Earth Planet. Sci. 2006. Vol. 34. pp. 83–125.
14. De Grave E., Van Alboom A. Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Minerals. 1991. Vol. 18, No. 5. pp. 337–342.
15. Eeckhout S. G., De Grave E. Evaluation of ferrous and ferric Mossbauer fractions. Part II. Phys. Chem. Minerals. 2003. Vol. 30. pp. 142–146.
16. Kondoro J. W. A. Mössbauer study of vacancies in natural pyrrhotite. Journal of Alloys and Compounds. 1999. Vol. 289. pp. 36–41.
17. Mussel W. N., Murad E., Fabris J. D., Moreira W. S., Barbosa J. B. S., Murta C. C., Abrahão W. P., De Mello J. W. V., Garg V. K. Characterization of a chalcopyrite from Brazil by Mössbauer spectroscopy and other physicochemical techniques. Phys. Chem. Minerals. 2007. Vol. 34. pp. 383–387.
18. Chizhevsky V. B., Shavakuleva O. P., Gmyzina N. V. The enrichment of titaniferous magnetite ores in the South Urals. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G. I. Nosova. 2012. No. 2. pp. 5–7.
19. Shavakuleva O. P. Development of a combined technology of beneficiation of Kopanskoe deposit complex iron ores. Dissertation for the degree of Candidate of Engineering Sciences. Magnitogorsk, 2007. 154 p.
20. Jena B. C., Dresier W., Reilly I. G. Extraction of titanium, vanadium and iron from titanomagnetite deposits at Pipestone Lake, Manitoba, Canada. Miner. Eng. 1995. Vol. 8, No. 1–2. pp. 159–168.
21. Abramov A. A. Collected Edition. Vol. 8. Flotation. Sulphide minerals. Moscow: Gornaya kniga, 2013. 704 p.

Language of full-text русский
Полный текст статьи Получить
Назад