Journals →  Gornyi Zhurnal →  2017 →  #4 →  Back

ArticleName Basic types of Moon’s resources and their mining and processing
DOI 10.17580/gzh.2017.04.02
ArticleAuthor Slyuta E. N.

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia:

E. N. Slyuta, Head of Laboratory, Candidate of Geologo-Mineralogical Sciences,


The aim of the article is to give a brief review of the major problems connected with the determination of basic types of Moon’s resources, conditions of their occurrence and spread in the regolith of the Moon and appraisal of possible reserves. It is shown that the most promising Moon’s resources are either concentrated in the regolith, or occur in the regolith in the enriched condition ready for the extraction. The scope of the review embraces the structure of the lunar regolith and various methods to estimate its thickness, which can be used in combination depending on the objective to be reached. Each method has a certain area of estimation. It is also shown that the drilling depth down to 15 m is suffi cient across the nearly entire Moon’s surface and provides an ample stratifi ed geological column of the regolith starting from the base rock formation. All extraterrestrial resources are divided into two basic categories. The fi rst category includes resources required for the industrial use on the spot. The second category of the extraterrestrial resources are the materials, crude or elements that are in defi cit or absent on the Earth, and their extraction and shipment to the Earth can be profi table. Under discussion are volatile gas components that are divided into three basic types depending on the mechanism of retention and the form of occurrence in the regolith – implanted, loosely bound and frozen volatile matter. Implanted gases are resistant to mechanical impact and temperature in the range of several hundred degrees. Weakly bound gases that pervade pore space of the lunar regolith, on the opposite, readily escape under thermal and mechanical attacks on the regolith. Frozen volatile gases are in open pore space of the lunar regolith and are intolerant relative to mechanical and temperature effects. The article shows that extraction of weakly bound and frozen volatile matter featuring weak concentration and availability is impossible using the classical technology of excavation, transportation and heating of the lunar soil. In the capacity of the most promising technology for the development of the Moon’s resources, the controllable selective extraction of gases from the natural and industrial silicates using electromagnetic resonance is considered.
The studies have been supported by the Russian Science Foundation, Grant No. 17-17-01279.

keywords Moon, lunar soil, regolith, extraterrestrial recourses, Moon’s resources, implanted volatiles, weakly bound volatiles, frozen volatiles, Moon development

1. Ananev P. P., Vorobev A. V. Prospective tasks of mining during the mastering of natural space objects. Gornyi Zhurnal. 2015. No. 4. p. 107.
2. French B. M. The Moon book. London : Penguin Books, 1977. 287 p.
3. Slyuta E. N. Physical and mechanical properties of the lunar soil (a review). Astronomicheskiy vestnik. 2014. Vol. 48, No. 5. pp. 358–382.
4. Preliminary examination of lunar samples. The lunar sample preliminary examination team. Apollo 15 Preliminary Science Report. Washington : National Aeronautics and Space Administration, 1972. Vol. 6. pp. 1–25.
5. Bondarenko N. V., Shkuratov Yu. G. A map of regolith layer thickness in the visible side of the Moon according to radiolocation and optical data. Astronomicheskiy vestnik. 1998. Vol. 32, No. 4. pp. 301–309.
6. Slyuta E. N., Yakovlev O. I., Voropaev S. A., Dubrovskiy A. V. He implantation and concentrations in minerals and lunar regolith particles. Geokhimiya. 2013. Vol. 51, No. 12. pp. 1066–1075.
7. Shkuratov Yu. G., Starukhina L. V., Kaydash V. G., Bondarenko N. V. Distribution of 3He content by the visible side of the Moon. Astronomicheskiy vestnik. 1999. Vol. 33, No. 5. pp. 466–478.
8. Selenology problems. Fundamental space investigations : monograph. Ed.: G. G. Raykunov. Moscow : Fizmatlit, 2014. Vol. 2. Solar Syatem. pp. 52–97.
9. Feldman W. C., Maurice S., Binder A. B., Barraclough B. L., Elphic R. C., Lawrence D. J. Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science. 1998. Vol. 281. pp. 1496–1500.
10. Sanin A. B., Mitrofanov I. G., Litvak M. L., Malakhov A., Boynton W. V., Chin G., Droege G., Evans L. G., Garvin J., Golovin D. V., Harshman K., McClanahan T. P., Mokrousov M. I., Mazarico E., Milikh G., Neumann G., Sagdeev R., Smith D. E., Starr R. D., Zuber M. T. Testing lunar permanently shadowed regions for water ice: LEND results from LRO. Journal of Geophysical Research: Planets. 2012. Vol. 117, No. E00H26. pp. 1–13.

11. Keller J. W., Petro N. E., Vondrak R. R., the LRO team. The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus. 2016. Vol. 273. pp. 2–24.
12. Litvak M. L., Mitrofanov I. G., Sanin A., Malakhov A., Boynton W. V., Chin G., Droege G., Evans L. G., Garvin J., Golovin D. V., Harshman K., McClanahan T. P., Mokrousov M. I., Mazarico E., Milikh G., Neumann G., Sagdeev R., Smith D. E., Starr R., Zuber M. T. Global maps of lunar neutron fluxes from the LEND instrument. Journal of Geophysical Research: Planets. 2012. Vol. 117, No E00H22. pp. 1–18.
13. Slyuta E. N., Petrov V. S., Yakovlev O. I., Voropaev S. A., Monakhov I. S., Prokofeva T. V. Application of thermodesorption mass spectrometry for studying proton water formation in the lunar regolith. Geochemistry International. 2017. Vol. 55, No. 1. pp. 27–37.
14. Bussey D. B. J., Lucey P. G., Steutel D., Robinson M. S., Spudis P. D., Edwards K. D. Permanent shadow in simple craters near the lunar poles. Geophysical Research Letters. 2003. Vol. 30, No. 6. pp. 11-1-11-4.
15. Spudis P. D., Bussey D. B. J., Baloga S. M., Cahill J. T. S., Glaze L. S., Patterson G. W., Raney R. K., Thompson T. W., Thomson B. J., Ustinov E. A. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar. Journal of Geophysical Research: Planets. 2013. Vol. 118. pp. 1–14.
16. Sviatoslavsky I. N., Jacobs M. Mobile Helium-3 Mining and Extraction System and Its Benefi ts Toward Lunar Base Self-Sufficiency. WCSAR-TR-AR3-8808-1 : Technical Report. Madison : Wisconsin Center for Space Automation and Robotics, 1988. 14 p.
17. Sviatoslavsky I. N. Lunar He-3 mining: Improvements on the design of the UW Mark II lunar miner. WCSAR-TR-AR3-9201-2 : Technical Report. Madison : Wisconsin Center for Space Automation and Robotics, 1992. 14 p.
18. Wilkes W. R., Wittenberg L. J. Isotopic separation of 3He/4He from solar wind gases evolved from the lunar regolith. WCSAR-TR-AR3-9201-4 : Technical Report. Madison : Wisconsin Center for Space Automation and Robotics, 1992. 10 p.
19. Sviatoslavsky I. N. The challenge of mining He-3 on the lunar surface: How all the parts fit together. WCSAR-TR-AR3-9311-2 : Technical Report. Madison : Wisconsin Center for Space Automation and Robotics, 1993. 12 p.
20. Gajda M. E. A Lunar Volatiles Miner : thesis of dissertation of Master of Science in Engineering Mechanics. Madison, 2006. 112 p.
21. Bula R. J., Wittenberg L. J., Tibbitts T. W., Kulcinski G. L. Potential of derived lunar volatiles for life support. Proceedings of the Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston : NASA, 1992. Vol. 2. pp. 547–550.

Language of full-text russian
Full content Buy