Журналы →  Non-ferrous Мetals →  2015 →  №2 →  Назад

METAL PROCESSING
Название Numerical simulation features of continuous casting process form AD31 (АД31) alloy using finite-difference and finite-element models
DOI 10.17580/nfm.2015.02.05
Автор Sevastyanov G. M., Chernomas V. V., Sevastyanov A. M., Mariyn S. B.
Информация об авторе

Institute of Theoretical Engineering and Metallurgy of Far-Eastern Branch of Russian Academy of Sciences, Komsomolsk-on-Amur, Russia:

G. M. Sevastyanov, Researcher of Laboratory “Metal Technology Problems”, e-mail: akela.86@mail.ru

 

Komsomolsk-on-Amur State Technical University, Komsomolsk-on-Amur, Russia:

V. V. Chernomas, Professor of a Chair “Machines and Foundry Engineering Technologies”
S. B. Marin, Assistant Professor of a Chair “Machines and Foundry Engineering Technologies”

 

Amur State University of Humanities and Pedagogy, Komsomolsk-on-Amur, Russia:

A. M. Sevastyanov, Acting Head of a Chair of Mathematics

Реферат

The paper deals with the use of two packages of numerical integration of the differential equations of heat and mass transfer Fourier – Kirchhoff stationary nonlinear boundary value problems arising in modeling of cooling and solidifying metal in the mold of continuous casting, on the example of the process of obtaining a cylindrical billet of aluminum alloy AD31 (АД31). One of the packages examined using finite-difference approximation of the original partial differential equations and implemented by the authors of this work, the second — non-commercial finite element package Elmer FEM company CSC — IT Center for Science Ltd. (Finland). The possibility of designing the cooling system of the mold shells on the basis of the evaporation circuit. A mathematical model of the process includes the conditions of contact and boundary heat transfer on the basis of relations for specific capacity of heat removal during boiling liquids near vertical surfaces as well as the source term in the equation of Fourier — Kirchhoff, due to the phase transition, the functional dependence of which the temperature is based on the analysis of the pseudo chart state of the alloy. Sampling spatial derivatives made by the Central difference scheme for the diffusion term of the equation and, counterflow scheme for the convective term. The rates of pulling the ingot, providing for the design under consideration mold forming a solid phase of a given thickness at the outlet of the primary cooling zone. It is shown that under certain structural and technological parameters of the stationary evaporative cooling takes place at the level of sub-critical heat flux density, which is a necessary condition for the stabilization process.

The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the basic tasks of the state in the sphere of scientific activity, the project No. 2559 “Mathematical modeling of thermomechanical processing of materials”.
The authors thank Peter Raback (Helsinki University of Technology), for advice on the use Elmer FEM in problems of heat and mass transfer in systems with phase transitions.

Ключевые слова Сontinuous casting of cylindrical blanks, AD31, finite-difference calculation complex, finite element calculation complex equation Fourier – Kirchhoff, mathematical modeling of crystallization
Библиографический список

1. F.-R. Cao, J.-L. Wen, H. Ding, Z.-D. Wang, C.-P. Yu, F. Xia. Extrusion force analysis of aluminum pipe fabricated by CASTEX using expansion combination die. Transactions of Nonferrous Metals Society of China (English Edition). 2014. Vol. 24, Iss. 11. pp. 3621–3631.
2. Odinokov V. I., Chernomas V. V., Lovizin N. S., Stulov V. V., Sklyar S. Yu. Technology for preparing metal objects in a horizontal casting and metal deformation unit. Metallurgist. 2009. Vol. 53, Iss. 7/8. pp. 412–415.
3. M. Ferry. Direct strip casting of metals and alloys. Cambridge, New York : Woodhead Publishing Limited, UK & CRC Press LLC, 2006. 275 p.
4. Zhiganov N. K., Volnov I. N., Fomina E. E., Zhiganov A. N. Modelirovanie i optimizatsiya protsessov diskretno-nepreryvnogo litya tsvetnykh metallov i ikh splavov (Modeling and optimization of the processes of discrete-continuous casting of non-ferrous metals and their alloys). Tver : Editorial-Publishing Centre of Tver State Technical University, 2009. 108 p.
5. Sengupta J., Thomas B. G., Wells M. A. The use of water cooling during the continuous casting of steel and aluminum alloys. Metallurgical and Materials Transactions A. 2005. Vol. 36, Iss. 1. pp. 187–204.
6. Benum S., Mortensen D., Fjaer H. Prediction of boundary conditions and hot spots during the start-up phase of an extrusion ingot casting. Weinheim : Wiley-VCH Verlag, 2006. 275 p.
7. De Carvalho C. V., Costa L. F. P., Moreira L. P., Santos G. R. T., Da Silva C. A., Da Silva I. A., Seshadri V. Determination of flow instabilities inside a continuous casting mold by particle image velocimetry and computational fluid dynamics. AISTech — Iron and Steel Technology Conference Proceedings. 2012. pp. 2247–2257.
8. Patankar S. V. Numerical heat transfer and fluid flow. Washington : Hemisphere Publishing Corp., 1980. 210 p.
9. Ranut P., Persi C., Nobile E., Spagnul S. Estimation of heat flux distribution in a continuous casting mould by inverse heat transfer algorithms. Proceedings of the ASME Design Engineering Technical Conference. 2011. Vol. 2. pp. 389–398.
10. Raback P., Malinen M., Ruokalainen J., Pursula A., Zwinger T. Elmer Models Manual. Helsinki : CSC — IT Center for Science, 2013.
11. GOST 23855-79. Slitki tsilindricheskie iz alyuminievogo splava AD31. Tekhnicheskie usloviya (State Standard 23855-79. Cylindrical ingots of aluminium alloy AD31. Specifications). Introduced: January 01, 1980. (in Russian)
12. Mikheev M. A., Mikheeva I. M. Osnovy teploperedachi (Heat transfer basis). Moscow : Energiya, 1977. 344 p.
13. Vargaftik N. B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey (Reference book about the trermal-physics properties of gases and liquids). Moscow : Nauka, 1972. 721 p.
14. Stankus S. V., Savchenko I. V., Agadzhanov A. Sh., Yatsuk O. S., Zhmurikov E. I. Thermophysical properties of MPG-6 graphite. High Temperature. 2013. Vol. 51, Iss. 2. pp. 179–182.
15. Zinovev V. E. Teplofizicheskie svoystva metallov pri vysokikh temperaturakh (Thermal physics properties of metals with high temperatures). Moscow : Metallurgiya, 1989. 384 p.
16. Zhang J., Fan Z., Wang Y. Q., Zhou B. L. Equilibrium pseudobinary Al – Mg2Si phase diagram. Materials Science and Technology. 2001. Vol. 17. pp. 494–496.
17. Sevastyanov G. M., Sevastyanov A. M., Odinokov V. I. Ob odnoy nachalno-kraevoy zadache teploprovodnosti v sisteme s fazovymi perekhodami (About one initial-boundary value of heat transfer in a phase change system). Matematicheskoe modelirovanie = Mathematical Models and Computer Simulations. 2013. Vol. 25, No. 3. pp. 119–133.
18. Kutateladze S. S., Nakoryakov V. E. Teplomassoobmen i volny v gazozhidkostnykh sistemakh (Heat and mass transfer and waves in gasliquid systems). Novosibirsk : Nauka, 1984. 302 p.

Language of full-text английский
Полный текст статьи Получить
Назад