Journals →  Chernye Metally →  2014 →  #7 →  Back

ArticleName Efficient strategies for process design and optimization in ring rolling
ArticleAuthor G. Schwich, J. Seitz, G. Hirt, V. Jenkouk

RWTH Aachen, Institut für Bildsame Formgebung (Aachen, Germany):

Schwich G., Mag. Eng., e-mail:
Seitz J., Mag. Eng.
Hirt G., Dr. Eng., Prof.


University of Cambridge (Cambridge, UK):

Jenkouk V., Mag. Eng., Dept. of Engineering


Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. Schematic diagram of the axial profiling displays ring rolling operating steps, including positioning of the laser measuring system. Experimental and simulation results are compared and presented in the paper, as well as comparison between outer diameter and radial force both in experiment and simulation. Development of recrystallized fraction, average grain size and recrystallization time are displayed. For reliable predictions of the material flow and the microstructure evolution it’s necessary to include a real ring rolling mill’s control algorithm into the model. Furthermore, an approach for the online measurement of the profile evolution during the process is presented by means of axial profi ling in ring rolling. Hence the defi nition of new ring rolling strategies it is possible even to provide advanced geometries, sufficient quality level and manufacture of shapes that could not be produced before with repeatable results. Using a linear laser helps to get important information about variation of geometric parameters. Material consumption can be cut by 25% comparing with conventional production processes, while expenses for mechanical processing — by 80%.

keywords Ring rolling, near-net-shape production, laser measuring, material flow, simulation, axial profiling, recrystallization, grain size, geometry

1. Forouzan, M.; Salimi, M.; Gadala, M.; Aljawi, A.: J. Mat. Proc. Tech. 142 (2003) Nr. 1, S. 213/23.
2. Li, L.; Yang, H.; Guo, L.; Sun, Z.: A control method of guide rolls in 3DFE simulation of ring rolling, J. Mat. Proc. Tech. 205 (2008) Nr. 1-3, S. 99/110.
3. Wang, Z.; Fan, J.; Hu, D.; Tang, C.; Tsui, C.: Complete modeling and parameter optimization for virtual ring rolling, Int. J. Mech. Sci. 52 (2010) Nr. 10, S. 1325/33.
4. Jenkouk, V.; Hirt, G.; Seitz, J.: Numerical simulations supporting the process design of ring rolling processes, Proc. 11th Intern. Conf. on Numerical Methods in Industrial Forming Process: Numiform 2013, 6.–10. Juli 2013, Shenyang, VR China, S. 695/700.
5. Johnson, W. A.; Mehl, R. F.: Reaction kinetics in processes of nucleation and growth, Metals Techn. 35 (1939) Nr. 1, S. 416/58.
6. Henke, T.; Hirt, G.; Bambach, M.: Application of a material model to predict rolling forces and microstructure during a hot ring rolling process, Materials Science Forum 762 (2013) Nr. 1, S. 354/59.
7. Dehghan-Manshadi, A.: Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mat. Sc. Eng. A 485 (2008) Nr. 1-2, S. 664/72.
8. Hodgson, P.; Jonas, J.; Davies, C.: Modeling of warm- and hot-forming, [in:] Handbook of Thermal Process Modeling, [Hrsg.:] Gür, C. H.; Pan, J. Taylor & Francis Group, Boca Raton, USA, 2009, S. 225/64.
9. Michl, D.: Untersuchung des flexiblen axialen Profilierens von nahtlosen Ringen auf Radial-Axial-Ring walz werken in Stahl, Shaker Verlag, Aachen, 2009.
10. Jenkouk, V.; Seitz, J.; Hirt, G.: Ringwalzen nicht-rechteckiger Querschnitte, Proc. 28. Aachener Stahl kol loquium 2013: Vom Werkstoff zum Produkt, 7.–8. März 2013, Aachen, S. 55/64.

Language of full-text russian
Full content Buy