Журналы →  Chernye Metally →  2011 →  №11 →  Назад

Iron and Steel Making
Название Higher cost and resource efficiencies during stainless steelmaking in an EAF
Автор V. Yu. Risonarta, M. Kirschen, Th. Echterhof, H. P. Yung, S. Lenz, Ch. Beiler, H. Pfeifer.
Информация об авторе

V. Yu. Risonarta, Siemens VAI Metals Technologies GmbH, Germany; M. Kirschen, RHI AG Process Technology and Systems Solutions, Austria; H. P. Yung; S. Lenz; Ch. Beiler, Deutsche Edelstahlwerke GmbH, Germany; Th. Echterhof; H. Pfeifer., Chair of Industrial Furnaces and Heat Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Germany; victor.y.risonarta@googlemail.com

Реферат

In this research study, the empirical model of chromium concentrations of tapped steel from EAF was successfully developed. During stainless steelmaking in an electric arc furnace (EAF), chromium concentrations at tapping should be well pre-estimated for several reasons. The model shows good agreement with observed compositions intapped steel and many expected results. In addition to the high price of raw materials for stainless steelmaking, efficient inputs and minimum losses of raw materials are also necessary for sustainable steel production which result in optimum cost of raw materials and electrical energy. Both excessively low and high chromium concentrations require re-balancing procedures with ferro-alloys which decrease liquid steel temperature and EAF energy efficiency. An innovative strategy is outlined in this paper to obtain higher energy and raw materials efficiency, higher productivity and lower production cost. The empirical model outlined in this paper can be used for a future industrial application at Level-2 and Level-3 of steel plants. In general, not particularly at DEW Siegen, an increase in slag additive input by 10 kg/t or an increase in alloy input by 1 % mass content after the refining period decreases liquid steel temperature by morethan 20 °C, which corresponds to a decrease of steel enthalpy of more than 6 kWh/t. In the end, through optimisation of raw materials and energy input during steelmaking, European steel industries also show their significant contribution to decreasedirect and indirect CO2 emissions.

Ключевые слова Electric arc furnaces, steel making, stainless steel, raw materials, ferro-alloys, energy efficiency, empirical model, mass content, carbon dioxide emissions
Библиографический список

1. Risonarta, V. Y.; Echterhof, T.; Jung, H. P.; Beiler, C.; Lenz, S.; Kirschen, M.; Pfeifer, H.: steel res. 81 (2010) No. 9, p. 778/83.

2. IPCC: Revised 1996 IPCC guidelines for national Greenhouse Gas inventories, reference manual, 1996.

3. Dt. Bundesregierung: Verordnung über die Zuteilung von Treibhausgas-Emissionsberichtigungen in der Zuteilungsperiode 2008 bis 2012; Bundesgesetzblatt 2007, Teil 1, Nr. 40, Bonn, Germany, 17 Aug 2007, p. 1941/53.

4. Lindstad, T.; Olsen, S.-E.; Tranell, G.; Fжrden, T.; Lubetsky, J.: Greenhouse gas emissions from ferroalloy production, Proc. Infacon XI, New Delhi, India, 18– 21 Feb 2007, p. 297/310.

5. Kirschen, M.; Badr, K.; Cappel, J.; Drescher, A.: RHI Bulletin (2010) No. 2, p. 43/48.

6. Fruehan, R.-J.: The making, shaping and treating of steels, steelmaking: refining volume, 11th ed., AISE Steel Found., Pittsburgh, USA, 1998, p. 664/65.

7. Ameling, D.; Baum, D.; Köhle, S.; Kreutzer, H.: stahl u. eisen 101 (1981) No. 4, p. 197/207.

8. Miki, Y.; Thomas, B.-G.; Denissov, A.; Shimada, Y.: Iron Steelmak. 24 (1997) No. 8, p. 31/38.

Language of full-text русский
Полный текст статьи Получить
Назад